Space weather is a multidisciplinary research area connecting scientists from across heliophysics domains seeking a coherent understanding of our space environment that can also serve modern life and society's needs. COSPAR's ISWAT (International Space Weather Action Teams) 'clusters' focus attention on different areas of space weather study while ensuring the coupled system is broadly addressed via regular communications and interactions. The ISWAT cluster "H3: Radiation Environment in the Heliosphere" (https://www.iswat-cospar.org/h3) has been working to provide a scientific platform to understand, characterize and predict the energetic particle radiation in the heliosphere with the practical goal of mitigating radiation risks associated with areospace activities, satellite industry and human space explorations. In particular, present approaches help us understand the physical phenomena at large, optimizing the output of multi-viewpoint observations and pushing current models to their limits. In this paper, we review the scientific aspects of the radiation environment in the heliosphere covering four different radiation types: Solar Energetic Particles (SEPs), Ground Level Enhancement (GLE, a type of SEP events with energies high enough to trigger the enhancement of ground-level detectors), Galactic Cosmic Rays (GCRs) and Anomalous Cosmic Rays (ACRs). We focus on related advances in the research community in the past 10-20 years and what we still lack in terms of understanding and predictive capabilities. Finally we also consider some recommendations related to the improvement of both observational and modeling capabilities in the field of space radiation environment.
Heliophysics is the field that ``studies the nature of the Sun, and how it influences the very nature of space - and, in turn, the atmospheres of planetary bodies and the technology that exists there.'' However, NASA's Heliophysics Division tends to limit study of planetary magnetospheres and atmospheres to only those of Earth. This leaves exploration and understanding of space plasma physics at other worlds to the purview of the Planetary Science and Astrophysics Divisions. This is detrimental to the study of space plasma physics in general since, although some cross-divisional funding opportunities do exist, vital elements of space plasma physics can be best addressed by extending the expertise of Heliophysics scientists to other stellar and planetary magnetospheres. However, the diverse worlds within the solar system provide crucial environmental conditions that are not replicated at Earth but can provide deep insight into fundamental space plasma physics processes. Studying planetary systems with Heliophysics objectives, comprehensive instrumentation, and new grant opportunities for analysis and modeling would enable a novel understanding of fundamental and universal processes of space plasma physics. As such, the Heliophysics community should be prepared to consider, prioritize, and fund dedicated Heliophysics efforts to planetary targets to specifically study space physics and aeronomy objectives.
32 pages, 30 figures, 2 tables, submitted to MNRAS, comments welcome
Collisions between giant molecular clouds (GMCs) have been proposed as a mechanism to trigger massive star and star cluster formation. To investigate the astrochemical signatures of such collisions, we carry out 3D magnetohydrodynamics simulations of colliding and non-colliding clouds exposed to a variety of cosmic ray ionization rates (CRIRs), $\zeta$, following chemical evolution including gas and ice-phase components. At the GMC scale, carbon starts mostly in $\rm{C^+}$, but then transitions into C, CO, followed by ice-phase CO and $\rm{CH_3OH}$ as dense, cooler filaments, clumps and cores form from the clouds. The oxygen budget is dominated by O, CO and water ice. In dense regions, we explore the gas phase CO depletion factor, $f_D$, that measures the extent of its freeze-out onto dust grains, including dependence on CRIR and observables of mass surface density and temperature. We also identify dense clumps and analyze their physical and chemical properties, including after synthetic line emission modeling, investigating metrics used in studies of infrared dark clouds (IRDCs), especially abundances of CO, $\rm HCO^+$ and $\rm N_2H^+$. For the colliding case, we find clumps have typical densities of $n_{\rm H}\sim10^5\:{\rm{cm}}^{-3}$ and temperatures of $\sim20\:$K, while those in non-colliding GMCs are cooler. Depending on $\zeta$ and GMC dynamical history, we find CO depletion factors of up to $f_D\sim10$, and abundances of HCO$^+\sim 10^{-9}$ to $10^{-8}$ and $\rm{N_2H^+}\sim10^{-11}$ to $10^{-10}$. Comparison with observed IRDC clumps indicates a preference for low CRIRs ($\sim10^{-18}\:{\rm{s}}^{-1}$) and a more quiescent (non-colliding), cooler and evolved chemodynamical history. We discuss the general implications of our results and their caveats for interpretation of molecular cloud observations.
submitted; comments welcome
We report JWST/NIRSpec spectra of three distant T-type brown dwarfs identified in the Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) survey of the Abell 2744 lensing field. One source was previously reported as a candidate T dwarf on the basis of NIRCam photometry, while the two other sources were initially identified as candidate active galactic nuclei. Ultradeep, low-resolution 1-5 $\mu$m spectra confirm the presence of molecular features consistent with T dwarf atmospheres, and comparison to near-infrared spectral standards infers spectral classifications of sdT1, T6, and T8-T9. The spectrum of the warmest source, UNCOVER-BD-1, shows evidence of subsolar metallicity, and a fit to atmosphere models indicates Teff = 1300 K and [M/H] ~ -1.0, making this one of the few examples of a spectroscopically-confirmed T subdwarf. The spectrum of the coldest source, UNCOVER-BD-3, places it near the T/Y dwarf boundary with Teff = 550 K, and we identify features of CH$_4$, CO, H$_2$O, and likely PH$_3$ in the 3.5-5.0 $\mu$m band. Our analysis suggests that PH3 is favored over CO$_2$ in this source, a possible indicator of subsolar metallicity. We estimate distances of 0.9-4.5 kpc from the Galactic midplane, and population simulations indicate high probabilities of membership in the Galactic thick disk or halo. Our simulations also indicate that there may be up to 7 T dwarfs and 5-6 L dwarfs in the Abell 2744 field down to F444W = 30 AB mag, roughly half of which are halo members. These results highlight the utility of deep JWST/NIRSpec spectroscopy for identifying and characterizing the oldest metal-poor brown dwarfs in the Milky Way.
20 pages, 14 figures, 6 tables, accepted for publication in MNRAS
To date, thousands of planets have been discovered, but there are regions of the orbital parameter space that are still bare. An example is the short period and intermediate mass/radius space known as the Neptunian desert, where planets should be easy to find but discoveries remain few. This suggests unusual formation and evolution processes are responsible for the planets residing here. We present the discovery of TOI-332 b, a planet with an ultra-short period of $0.78$ d that sits firmly within the desert. It orbits a K0 dwarf with an effective temperature of $5251 \pm 71$ K. TOI-332 b has a radius of $3.20^{+0.16}_{-0.12}$ R$_{\oplus}$, smaller than that of Neptune, but an unusually large mass of $57.2 \pm 1.6$ M$_{\oplus}$. It has one of the highest densities of any Neptune-sized planet discovered thus far at $9.6^{+1.1}_{-1.3}$ gcm$^{-3}$. A 4-layer internal structure model indicates it likely has a negligible hydrogen-helium envelope, something only found for a small handful of planets this massive, and so TOI-332 b presents an interesting challenge to planetary formation theories. We find that photoevaporation cannot account for the mass loss required to strip this planet of the Jupiter-like envelope it would have been expected to accrete. We need to look towards other scenarios, such as high-eccentricity migration, giant impacts, or gap opening in the protoplanetary disc, to try and explain this unusual discovery.
Accepted for publication in ApJ, 18 pages, 9 figures
5 pages, 4 figures. Submitted to MNRAS Letters
submitted to A&A, comments very welcome
13 pages, 5 figures, accepted for publication in AJ
Submitted to ApJ, comments welcome
Submitted to ApJ, comments welcome
7 pages, 3 figures
3 pages, 4 figures, to appear in the Proceedings of the URSI GASS 2023, Sapporo, Japan, 19 to 26 August 2023
274 pages
13 pages, accepted to ApJ
22 pages, 19 figures
14 pages, 5 figures, accepted in AJ
Submitted to MNRAS; 23 pages, 21 figures, 1 table
Accepted by ApJ; 29 pages,19 figures, 6 tables
10 pages. 3 Figures. 1 Table Accepted - Research in Astronomy and Astrophysics (RAA)
15 pages, 13 figures,accepted for publication in APJ
21 Pages, 7 Figures, 18 Figures in Supplementary material, accepted for publication in Frontiers in Astronomy and Space Sciences
8 pages, 8 figures, Proceedings of the 38th International Cosmic Ray Conference (ICRC2023)
8 pages, 7 figures, 1 table, Proceedings of the 38th International Cosmic Ray Conference 2023
8 Pages, 4 Figures, To appear in Proceedings of Science (ICRC 2023)
12 pages, 10 figures, accepted by MNRAS
submitted to MNRAS, 19 pages, 13 figures
5 pages, 4 figures
Accepted for publication in PASJ, 32 pages, 20 figures, 1 table
Accepted for publication in Astronomy & Astrophysics. 14 pages, 15 figures
4 pages, 3 figures
Proceedings paper presented at the 38th International Cosmic Ray Conference (ICRC2023), held 26 July - 3 August, 2023, in Nagoya, Japan
Accepted for publication in ApJ
16 pages, 9 figures, 2 tables, ApJ, in press
Presented at the 38th International Cosmic Ray Conference (ICRC2023). See arXiv:2307.13047 for all IceCube contributions
45 pages, 9 figures
Master thesis, 104 pages, 29 figures
15 pages, 8 figures
16 pages; accepted for publication in Studies in History and Philosophy of Science