We investigate the variability of the UV luminosity function (UVLF) at $z > 5$ using the SPICE suite of cosmological, radiation-hydrodynamic simulations, which include three distinct supernova (SN) feedback models: bursty-sn, smooth-sn, and hyper-sn. The bursty-sn model, driven by intense and episodic SN explosions, produces the highest fluctuations in the star formation rate (SFR). Conversely, the smooth-sn model, characterized by gentler SN feedback, results in minimal SFR variability. The hyper-sn model, featuring a more realistic prescription that incorporates hypernova (HN) explosions, exhibits intermediate variability, closely aligning with the smooth-sn trend at lower redshifts. These fluctuations in SFR significantly affect the $\rm{M_{UV} - M_{halo}}$ relation, a proxy for UVLF variability. Among the models, bursty-sn produces the highest UVLF variability, with a maximum value of 2.5. In contrast, the smooth-sn and hyper-sn models show substantially lower variability, with maximum values of 1.3 and 1.5, respectively. However, in all cases, UVLF variability strongly correlates with host halo mass, with lower-mass halos showing greater variability due to more effective SN feedback in their shallower gravitational wells. The bursty-sn model, though, results in higher amplitudes. Variability decreases in lower mass haloes with decreasing redshift for all feedback models. This study underscores the critical role of SN feedback in shaping the UVLF, and highlights the mass and redshift dependence of its variability, suggesting that UVLF variability may alleviate the bright galaxy tension observed by JWST at high redshifts.