A list of the previously discussed papers can be found here .
Time-varying dark energy is often modeled in observational analyses through generic parameterizations of its equation of state $w(z)$, which typically use two free parameters $\{w_0, w_a\}$ to span a broad range of behaviors as a function of redshift. However, this broad range of behaviors can only approximately capture the dynamics of any given microphysical theory of dark energy. A complementary approach is to use targeted parameterizations designed to model specific classes of dynamical dark energy with greater precision. Focusing on the class of thawing dark energy, we quantify and compare the precision with which nineteen generic and targeted parameterizations can capture the dynamics of physically motivated thawing quintessence theories. We find that a targeted parameterization derived from a Padé expansion of $w$ is the most reliable of these, producing accurate reconstructions of $w(z)$, the expansion history $H(z)$, and cosmological parameters such as $H_0$ and $\Omega_m$ for a broad range of microphysical theories.
There has been growing evidence that the rich star clusters in the Magellanic Clouds contain significant fractions of rapidly rotating stars. In this work, we aim to constrain these fractions by studying the colour-magnitude diagrams of four star clusters, selected among those with the most striking signatures of fast rotators. Using isochrones derived from PARSEC v2.0 stellar tracks, we generate distinct stellar populations, each covering a limited interval of initial rotation rates $\omega_\mathrm{i}$, referred to as 'Partial Models' (PMs). Using optimization algorithms and Monte Carlo Markov Chains, PMs are combined to create the final best-fitting model. In our analysis, we adopt two key assumptions: a uniform age and an isotropic distribution of stellar spin axes within each cluster. The solutions are allowed to explore the entire range of $\omega_\mathrm{i}$, and different values of age, metallicity, distance and foreground extinction. We find that the rotational velocity distributions in all four clusters reveal a high fraction of stars with $\omega_\mathrm{i}$ close to the break-up value, in all cases. Specifically, the fraction of stars with $\omega_\mathrm{i}>0.7$ exceeds $80\%$ in the clusters NGC 419 of the Small Magellanic Cloud (SMC) and NGC 1831 and NGC 1866 of the Large Magellanic Cloud (LMC). For NGC 2203 of the LMC, this fraction is smaller, although it still exceeds $50\%$, confirming that also this cluster is mainly populated by fast-rotating stars.
Pulsar halos are regions around middle-aged pulsars extending out to tens of parsecs. The large extent of the halos and well-defined central cosmic-ray accelerators make this new class of Galactic sources an ideal laboratory for studying cosmic-ray transport. LHAASO J0621+3755 is a candidate pulsar halo associated with the middle-aged gamma-ray pulsar PSR J0622+3749. We observed LHAASO J0621+3755 with VERITAS and XMM-Newton in the TeV and X-ray bands, respectively. For this work, we developed a novel background estimation technique for imaging atmospheric Cherenkov telescope observations of such extended sources. No halo emission was detected with VERITAS (0.3--10 TeV) or XMM-Newton (2--7 keV) within 1 degree and 10 arcmin around PSR J0622+3749, respectively. Combined with the LHAASO-KM2A and Fermi-LAT data, VERITAS flux upper limits establish a spectral break at ~1--10 TeV, a unique feature compared with Geminga, the most studied pulsar halo. We model the gamma-ray spectrum and LHAASO-KM2A surface brightness as inverse Compton emission and find suppressed diffusion around the pulsar, similar to Geminga. A smaller diffusion suppression zone and harder electron injection spectrum than Geminga are necessary to reproduce the spectral cutoff. A magnetic field <= 1 uG is required by our XMM-Newton observation and synchrotron spectral modeling, consistent with Geminga. Our findings support slower diffusion and lower magnetic field around pulsar halos than the Galactic averages, hinting at magnetohydrodynamic turbulence around pulsars. Additionally, we report the detection of an X-ray point source spatially coincident with PSR J0622+3749, whose periodicity is consistent with the gamma-ray spin period of 333.2 ms. The soft spectrum of this source suggests a thermal origin.
Quasi-periodic pulsations (QPPs) in the Balmer continuum of solar white-light flares (WLFs) are rarely reported, and accurately pinpointing the spatial source of flaring QPPs remains a significant challenge. We present spatiotemporal characteristics of QPPs of an X2.8 two-ribbon solar WLF (SOL2023-12-14T17:02), which was well observed by the White-light Solar Telescope (WST) aboard the Advanced Space-based Solar Observatory, with high-cadence imaging (1--2 s) in the Balmer continuum at 3600 Å. Combined with additional multi-instrument data, we find that the enhancement of the WLF in both Balmer and Paschen continua shows strong spatiotemporal correlation with hard X-ray (HXR) emissions. Notably, the pulses in the WST Balmer continuum exhibited a near-zero time lag with most HXR pulses, whereas soft X-ray and extreme ultraviolet emissions showed a lag of 2--3 s. Interestingly, quasi-harmonic QPPs with periods of $\sim$11 s and $\sim$20 s were observed in multiple wavelengths in the rising phase of the white-light continuum. Furthermore, we employed Fourier transform to spatially locate the QPPs around 11 and 20 s, revealing that they primarily originated from the east flare ribbon, which exhibited the most substantial continuum enhancement. More interestingly, we find that the west ribbon contributed significantly to the 11-second QPP but had a weaker contribution to the 20-second QPP. Moreover, the occurrence of quasi-harmonic QPPs is temporally coincident with the rapid elongation and separation motions of flare ribbons. Possible mechanisms for the quasi-harmonic QPPs have been discussed. These observations provide valuable insights into QPP modeling for solar and stellar flares.
Deuteration of hydrocarbon material, including polycyclic aromatic hydrocarbons (PAHs), has been proposed to account for the low gas-phase abundances of D in the interstellar medium. JWST spectra of four star-forming regions in M51 show an emission feature, with central wavelength $\sim$4.647$\mu$m and FWHM 0.0265$\mu$m, corresponding to the C-D stretching mode in aliphatic hydrocarbons. The emitting aliphatic material is estimated to have (D/H)$_{\rm aliph}\approx 0.17\pm0.02$ -- a factor $\sim$$10^4$ enrichment relative to the overall interstellar medium (ISM). On $\sim$$50\,$pc scales, deuteration levels toward four H$\,$II regions in M51 are 2-3 times higher than in the Orion Bar photodissociation region (PDR), with implications for the processes responsible for the formation and evolution of hydrocarbon nanoparticles, including PAHs. The deuteration of the aliphatic material is found to anticorrelate with helium ionization in the associated H$\,$II, suggesting that harsh FUV radiation may act to lower the deuteration of aliphatics in PDRs near massive stars. No evidence is found for deuteration of aromatic material, with (D/H)$_{\rm arom} \lesssim 0.016$: deuteration of the aliphatic material exceeds that of the aromatic material by at least a factor 10. The observed levels of deuteration may account for the depletion of D observed in the Galactic interstellar medium. If so, the $4.65\mu$m feature may be detectable in absorption.
this https URL } when this paper is accepted for publication
arXiv:2307.02963 in light of the latest ACT data