This is the list of the papers for the past 5 days that include local authors affiliated with Princeton University. This list is based on a string-matching algorithm that compares arxiv's author lists to the list of the members of the Princeton astro department. If one of your papers is not listed here, there are two possible reasons:
1. The string matching algorithm failed at recognizing your name which happens too often for our liking. At the moment we use a simple algorithm that requires threshold values that are poorly optimized. Contributions are welcome!
2. Your name is not in the list, either because you are new or because the admin did not pull the list that contains your name yet. In this case, please let Chang-Goo Kim know about the issue.
We present high resolution WIYN/NEID echelle spectroscopy (R $\approx70$,000) of the supernova (SN) 2023ixf in M101, obtained 1.51 to 18.51 days after explosion over nine epochs. Daily monitoring for the first four days after explosion shows narrow emission features ($\leq200$ km s$^{-1}$), exhibiting predominantly blueshifted velocities, that rapidly weaken, broaden, and vanish in a manner consistent with radiative acceleration and the SN shock eventually overrunning or enveloping the full extent of dense circumstellar medium (CSM). The most rapid evolution is in the He I emission, which is visible on day 1.51 but disappears by day 2.62. We measure the maximum pre-SN speed of He I to be 25 $^{+0}_{-5} \pm2$ km s$^{-1}$, where the error is attributable to the uncertainty in how much the He I had already been radiatively accelerated, and to measurement of the emission line profile. The radiative acceleration of material is likely driven by the shock-CSM interaction, and the CSM is accelerated to $\geq200$ km s$^{-1}$ before being completely swept up by the SN shock to $\sim 2000$ km s$^{-1}$. We compare the observed spectra with spherically-symmetric r16wb HERACLES/CMFGEN model spectra and find the line evolution to generally be consistent with radiative acceleration and optical depth effects. The progenitor of SN2023ixf underwent an enhanced mass loss phase $\gtrsim 4$ year prior to core-collapse, creating a dense, asymmetric CSM region extending out to approximately $r_{CSM} = 3.7 \times 10^{14}$ ($v_\textrm{shock}$/9500 km s$^{-1}$) cm.
Dark matter halos with self-interacting dark matter (SIDM) experience a unique evolutionary phenomenon, in that their central regions eventually collapse to high density through the runaway gravothermal process after initially forming a large and low-density core. When coupled with orbital evolution, this is expected to naturally produce a large diversity in dark-matter halos' inner mass distribution, potentially explaining the diversity problem of dwarf galaxies. However, it remains unknown how the diversity in SIDM dark-matter halos propagates to the more easily observed luminous matter at the center of the halo, especially the stellar component. In this work, we use idealized N-body simulations with two species of particles (dark matter and stars) to study the response of the stellar properties of field and satellite dwarf galaxies to SIDM evolution and orbital effects on their halos. Galaxies' stellar components, including galaxy size, mass-to-light ratio, and stellar velocity dispersion, display a much larger scatter in SIDM than the standard cold dark matter (CDM) model. Importantly, we find signs of universality in the evolution pathways, or ``tidal tracks'', of SIDM dwarf satellites, which are physically interpretable and potentially parameterizable. This type of tidal-track model can be layered onto larger-scale, cosmological simulations to reconstruct the evolution of populations of SIDM dwarfs in cases where high-resolution simulations of galaxies are otherwise prohibitively expensive.
"PeVatrons" refer to astrophysical sources capable of accelerating particles to energies $\sim$PeV and higher, potentially contributing to the cosmic ray spectrum in the knee region. Recently, HAWC and LHAASO have discovered a new type PeVatrons -- X-ray binaries, allowing us to investigate in greater depth of the contributions of these sources to cosmic rays around the knee region. There are hundreds of X-ray binaries in our galaxy observed, which are potential PeVatrons. In this work, we derive the radial distribution of X-ray binaries in the Galaxy. Then we use the DRAGON package to simulate this distribution, and calculate energy spectrum, anisotropy of cosmic rays as well as the resulting diffuse gamma ray emissions, after considering them as factories of cosmic rays in the knee energy bands. our findings show that the contribution from the X-ray binaries, especially microquarsars, may be dominant. More microquasar PeVatrons can be observed by LHAASO and HAWC in the future, and will confirm the contribution of microquasars to high energy cosmic rays.
The detonation behaviors during thermonuclear burning indicate a state of robust hot spot burning and are widely present in astronomical phenomena, such as supernovae. In this work, we propose an analytical model including alpha-particle deposition at the shock front, which significantly lowers the detonation threshold. The new temperature threshold is 13.4 keV for the isochoric ignition and 25.1 keV for the isobaric ignition, both of which are more accessible experimentally. When a shock wave is present, alpha-particle deposition occurs at the high-density shock front instead of the cold fuel, accelerating the burning wave by approximately 20%. To further validate these findings, we conducted a series of 3D radiation hydrodynamics simulations using finite isochoric hot spots with different fast electron energy. The results reveal a rise in burn-up fraction caused by the detonation wave with a deposited fast electron energy about 8.5 kJ. This work can provide a reference for the realization of fusion energy via fast ignition schemes, such as the double-cone ignition scheme. This work also shows the possibility of studying the detonation in astrophysics with laser driven fast ignition.
We develop a simple method to search for changing-look (CL) active galactic nucleus (AGN) candidates, and conduct a test run. In this method, optical variations of AGNs are monitored and CL-AGNs may appear to have a pattern of being bluer when in brightening flare-like events. Applying this method, previously-classified type 2 AGNs that show the bluer-when-brighter (BWB) pattern are selected. Among more than ten thousands type 2 AGNs classified in the Sloan Digital Sky Survey (SDSS), we find 73 candidates with possibly the strongest BWB pattern. We note that 13 of them have previously been reported as CL-AGNs. We have observed nine candidates, and found that five among them showed the CL transition from type 2 to type 1. In addition, we also test extending the selection to previously-classified type 1 AGNs in the SDSS by finding sources with a possible redder-when-brighter pattern, but none of the three sources observed by us is found to show the transition from type 1 to type 2. We discuss the variation properties in both the success and failure cases, and plan to observe more candidates selected with the method. From the observational results, a detailed comparison between the CL-AGNs and none CL-AGNs will help quantitatively refine the selection criteria and in turn allow us to configure the general properties of CLAGNs.
Dense, cold gas is the key ingredient for star formation. Over the last two decades, HCN(1-0) emission has been utilised as the most accessible dense gas tracer to study external galaxies. We present new measurements tracing the relationship between dense gas tracers, bulk molecular gas tracers, and star formation in the ALMA ALMOND survey, the largest sample of resolved (1-2 kpc resolution) HCN maps of galaxies in the local universe (d < 25 Mpc). We measure HCN/CO, a line ratio sensitive to the physical density distribution, and SFR/HCN, a proxy for the dense gas star formation efficiency, as a function of molecular gas surface density, stellar mass surface density, and dynamical equilibrium pressure across 31 galaxies, increasing the number of galaxies by a factor of > 3 over the previous largest such study (EMPIRE). HCN/CO increases (slope of ~ 0.5 and scatter of ~ 0.2 dex), while SFR/HCN decreases (slope of ~ -0.6 and scatter of ~ 0.4 dex) with increasing molecular gas surface density, stellar mass surface density and pressure. Galaxy centres with high stellar mass surface density show a factor of a few higher HCN/CO and lower SFR/HCN compared to the disc average, but both environments follow the same average trend. Our results emphasise that molecular gas properties vary systematically with the galactic environment and demonstrate that the scatter in the Gao-Solomon relation (SFR against HCN) is of physical origin.
To study the early Universe, it is essential to estimate cosmological parameters with high accuracy, which depends on the optimal reconstruction of Cosmic Microwave Background (CMB) maps and the measurement of their power spectrum. In this paper, we generalize the neural network developed for applying the Wiener Filter, initially presented for temperature maps in previous work, to polarization maps. Our neural network has a UNet architecture, including an extra channel for the noise variance map, to account for inhomogeneous noise, and a channel for the mask. In addition, we propose an iterative approach for reconstructing the E and B-mode fields, while addressing the E-to-B leakage present in the maps due to incomplete sky coverage. The accuracy achieved is satisfactory compared to the Wiener Filter solution computed with the standard Conjugate Gradient method, and it is highly efficient, enabling the computation of the power spectrum of an unknown signal using the optimal quadratic estimator. We further evaluate the quality of the reconstructed maps at the power spectrum level along with their corresponding errors, finding that these errors are smaller than those obtained using the well-known pseudo-$C_\ell$ approach. Our results show that increasing complexity in the applied mask presents a more significant challenge for B-mode reconstruction.
Stellar activity contamination of radial velocity (RV) data is one of the top challenges plaguing the field of extreme precision RV (EPRV) science. Previous work has shown that photometry can be very effective at removing such signals from RV data, especially stellar activity caused by rotating star spots and this http URL exact utility of photometry for removing RV activity contamination, and the best way to apply it, is not well known. We present a combination photometric and RV study of eight Kepler/K2 FGK stars with known stellar variability. We use NEID RVs acquired simultaneously with TESS photometry, and we perform injection recovery tests to quantify the efficacy of recent TESS photometry versus archival Kepler/K2 photometry for removing stellar variability from RVs. We additionally experiment with different TESS sectors when training our models in order to quantify the real benefit of simultaneously acquired RVs and photometry. We conclude that Kepler photometry typically performs better than TESS at removing noise from RV data when it is available, likely due to longer baseline and precision. In contrast, for targets with available K2 photometry, especially those most active, and with high precision ($\sigma_{NEID}$ $<$ 1 m s$^{-1}$) NEID RVs, TESS may be the more informative dataset. However, contrary to expectations, we have found that training on simultaneous photometry does not always achieve the best results.
The short-lived ionized emission lines in early spectroscopy of the nearby type II supernova SN 2024ggi signify the presence of dense circumstellar matter (CSM) close to its progenitor star. We proposed the Atacama Large Millimeter/submillimeter Array (ALMA) observations by its Director's Discretionary Time program to catch the potential synchrotron radiation associated with the ejecta-CSM interaction. Multi-epoch observations were conducted using ALMA band 6 at +8, +13, and +17 days after the discovery. The data show non-detections at the position of SN 2024ggi with a 3sigma upper limit of less than 0.15 mJy, corresponding to a luminosity of approximately 8*10^24 erg/s/Hz. In this paper, we leverage the non-detections to place constraints on the properties of CSM surrounding SN 2024ggi. We investigate both the Wind and Eruptive models for the radial distribution of CSM, assuming a constant mass-loss rate in the Wind model and a distance-variant mass-loss rate in the Eruptive model. The derived CSM distribution for the Wind model does not align with the early-time spectral features, while the ALMA observations suggest a mass-loss rate of ~ 5*10^-3 Msun/year for the Eruptive model. Conducting multi-epoch millimeter/submillimeter observations shortly after the explosion, with a cadence of a few days, could offer a promising opportunity to capture the observable signature of the Eruptive model.
Secondary cosmic ray fluxes are important probes of the propagation and interaction of high-energy particles in the Galaxy. Recent measurements of primary and secondary cosmic ray nuclei have revealed unexpected spectral features that demand a deeper understanding. In this work we report the direct measurement of the cosmic ray boron spectrum from 10 TeV/n to 8 TeV/n with eight years of data collected by the Dark Matter Particle Explorer (DAMPE) mission. The measured spectrum shows an evident hardening at $182\pm24$ GeV/n with a spectral power index of $\gamma_1 = 3.02 \pm 0.01$ before the break and an index change of $\Delta \gamma = 0.31 \pm 0.05$ after the break. A simple power law model is disfavored at a confidence level of 8$\sigma$. Compared with the hardenings measured in the DAMPE proton and helium spectra, the secondary boron spectrum hardens roughly twice as much as these primaries, which is consistent with a propagation related mechanism to interpret the spectral hardenings of cosmic rays observed at hundreds of GeV/n.
With the development of wide-field surveys, a large amount of data on short-period W UMa contact binaries have been obtained. Continuous and uninterrupted light curves as well as high-resolution spectroscopic data are crucial in determining the absolute physical parameters. Targets with both TMTS light curves and LAMOST medium-resolution spectra were selected. The absolute physical parameters were inferred with the W-D code for ten systems, all of them are W-type shallow or medium contact binaries. The O'Connell effect observed in the light curves can be explained by adding a spot on the primary or secondary component in the models. According to O-C analysis, the orbital periods exhibit a long-term increasing or decreasing trend, amongst which J0132, J1300, and J1402 show periodic variations that may be attributed to the presence of a third body or magnetic activity cycles. Spectral subtraction analysis revealed that the equivalent width of H$\alpha$ indicates strong magnetic activity in J0047, J0305, J0638, and J1402. Among the 10 selected binary systems, except for J0132 and J0913, the more massive components are found to be main-sequence stars while the less massive components have evolved off the main sequence. In J0132, both components are in the main sequence, whereas both components of J0913 lie above the terminal-age main sequence. Based on the relationship between orbital angular momentum and total mass for these two systems, as well as their low fill-out factors, it is possible that these two systems are newly formed contact binaries, having recently evolved from the detached configuration.
A primary target of the \Euclid space mission is to constrain early-universe physics by searching for deviations from a primordial Gaussian random field. A significant detection of primordial non-Gaussianity would rule out the simplest models of cosmic inflation and transform our understanding of the origin of the Universe. This paper forecasts how well field-level inference of galaxy redshift surveys can constrain the amplitude of local primordial non-Gaussianity ($f_{NL}$), within a Bayesian hierarchical framework, in the upcoming \Euclid data. We design and simulate mock data sets and perform Markov chain Monte Carlo analyses using a full-field forward modelling approach. By including the formation history of the cosmic matter field in the analysis, the method takes into account all available probes of primordial non-Gaussianity, and goes beyond statistical summary estimators of $f_{NL}$. Probes include, for example, two-point and higher-order statistics, peculiar velocity fields, and scale-dependent galaxy biases. Furthermore, the method simultaneously handles systematic survey effects, such as selection effects, survey geometries, and galaxy biases. The forecast shows that the method can reach precision levels of up to $\sigma (f_{NL}) = 2.3$ (68.3\% CI, and at the grid resolution $\Delta L = 62.5\,h^{-1}$Mpc) with \Euclid data. We also provide data products, including realistic $N$-body simulations with nonzero values of $f_{NL}$ and maps of adiabatic curvature fluctuations. The results underscore the feasibility and advantages of field-level inference to constrain $f_{NL}$ in galaxy redshift surveys. Our approach consistently captures all the information available in the large-scale structure to constrain $f_{NL}$, and resolves the degeneracy between early-universe physics and late-time gravitational effects, while mitigating the impact of systematic and observational effects.
Broadband spectroscopic observations with high sensitivity provide an unbiased way to detect emissions of molecules in space. We present deep observations from ~ 105.8 GHz to 113.6 GHz toward 50 Galactic massive star-forming regions using IRAM 30-m millimeter telescope, with noise levels ranging from 6 to 29 at frequency channel spacing of 195 kHz, which corresponds to ~ 0.54 km/s at 110 GHz. Totally, 27 molecular species have been identified, of which 16 are complex organic molecules. The related parameters, such as peak temperature, integrated intensity, and line width of the identified molecular lines were obtained. The line widths of the chemically related molecules show strong positive correlations, suggesting they likely originate from similar gases within star-forming regions. This work highlights the fundamental properties of the detected molecular lines and offers a valuable dataset for further studies on the astrochemical evolution of molecules in massive star-forming cores.
Molecular gas, as the fuel for star formation, and its relationship with atomic gas are crucial for understanding how galaxies regulate their star forming (SF) activities. We conducted IRAM 30m observations of 23 nearby spiral galaxies from the CHANG-ES project to investigatet the distribution of molecular gas and the Kennicutt-Schmidt law. Combining these results with atomic gas masses from previous studies, we aim to investigate the scaling relations that connect the molecular and atomic gas masses with stellar masses and the baryonic Tully-Fisher relation. Based on spatially resolved observations of the three CO lines, we calculated the total molecular gas masses, the ratios between different CO lines, and derived physical parameters such as temperature and optical depth. The median line ratios for nuclear/disk regions are 8.6/6.1 (^{12}\mathrm{CO}/^{13}\mathrm{CO}\ J=1{-}0) and 0.53/0.39 (^{12}\mathrm{CO}\ J=2{-}1/J=1{-}0). Molecular gas mass derived from ^{13}\mathrm{CO} is correlated but systematically lower than that from ^{12}\mathrm{CO}. Most galaxies follow the spatially resolved SF scaling relation with a median gas depletion timescale of approximately 1 Gyr, while a few exhibit shorter timescales of approximately 0.1 Gyr. The molecular-to-atomic gas mass ratio correlates strongly with stellar mass, consistent with previous studies. Galaxies with lower stellar masses show an excess of atomic gas, indicating less efficient conversion to molecular gas. Most galaxies tightly follow the baryonic Tully-Fisher relation, but NGC 2992 and NGC 4594 deviate from the relation due to different physical factors. We find that the ratio of the cold gas (comprising molecular and atomic gas) to the total baryon mass decreases with the gravitational potential of the galaxy, as traced by rotation velocity, which could be due to gas consumption in SF or being heated to the hot phase.
We use the angular cross-correlation between a Luminous Red Galaxy (LRG) sample from the DR9 DESI Legacy Survey and the $Planck$ PR4 CMB lensing maps to constrain the local primordial non-Gaussianity parameter $f_{\rm NL}$ using the scale-dependent galaxy bias effect. The galaxy sample covers $\sim$ 40% of the sky and contains galaxies up to $z \sim 1.4$, and is calibrated with the LRG spectra that have been observed for the DESI Survey Validation. We apply a nonlinear imaging systematics treatment based on neural networks to remove observational effects that could potentially bias the $f_{\rm NL}$ measurement. Our measurement is performed without blinding, but the full analysis pipeline is tested with simulations including systematics. Using the two-point angular cross-correlation between LRG and CMB lensing only ($C_\ell^{\kappa G}$) we find $f_{\rm NL} = 39_{-38}^{+40}$ at 68% confidence level, and our result is robust in terms of systematics and cosmology assumptions. If we combine this information with the autocorrelation of LRG ($C_\ell^{GG}$) applying a $\ell_{\rm min}$ scale cut to limit the impact of systematics, we find $f_{\rm NL} = 24_{-21}^{+20}$ at 68% confidence level. Our results motivate the use of CMB lensing cross-correlations for measuring $f_{\rm NL}$ with future datasets given its stability in terms of observational systematics compared to the angular auto-correlation.