Accepted by SCPMA. 21 pages, 14 figures. The pipeline is accessible at this https URL
The Five-hundred-meter Aperture Spherical radio Telescope (FAST) has the largest aperture and a 19-beam L-band receiver, making it powerful for investigating the neutral hydrogen atomic gas (HI) in the universe. We present HiFAST (https://hifast.readthedocs.io), a dedicated, modular, and self-contained calibration and imaging pipeline for processing the HI data of FAST. The pipeline consists of frequency-dependent noise diode calibration, baseline fitting, standing wave removal using an FFT-based method, flux density calibration, stray radiation correction, and gridding to produce data cubes. These modules can be combined as needed to process the data from most FAST observation modes: tracking, drift scanning, On-The-Fly mapping, and most of their variants. With HiFAST, the RMS noises of the calibrated spectra from all 19 beams were only slightly (~ 5%) higher than the theoretical expectation. The results for the extended source M33 and the point sources are consistent with the results from Arecibo. The moment maps (0,1 and 2) of M33 agree well with the results from the Arecibo Galaxy Environment Survey (AGES) with a fractional difference of less than 10%. For a common sample of 221 sources with signal-to-noise ratio S/N >10 from the Arecibo Legacy Fast ALFA (ALFALFA) survey, the mean value of fractional difference in the integrated flux density, $S_{\mathrm{int}}$, between the two datasets is approximately 0.005 %, with a dispersion of 15.4%. Further checks on the integrated flux density of 23 sources with seven observations indicate that the variance in the flux density of the source with luminous objects ($S_\mathrm{int}$ $ > 2.5$ Jy km s$^{-1}$) is less than 5%. Our tests suggest that the FAST telescope, with the efficient, precise, and user-friendly pipeline HiFAST, will yield numerous significant scientific findings in the investigation of the HI in the universe.
Pillars of Creation, one of the most recognized objects in the sky, are believed to be associated with the formation of young stars. However, so far, the formation and maintenance mechanism for the pillars are still not fully understood due to the complexity of the nonlinear radiation magneto-hydrodynamics (RMHD). Here, assuming laboratory laser-driven conditions, we studied the self-consistent dynamics of pillar structures in magnetic fields by means of two-dimensional (2D) and three-dimensional (3D) RMHD simulations, and these results also support our proposed experimental scheme. We find only when the magnetic pressure and ablation pressure are comparable, the magnetic field can significantly alter the plasma hydrodynamics. For medium magnetized cases ($\beta_{initial} \approx 3.5$), {the initial magnetic fields undergo compression and amplification. This amplification results in the magnetic pressure inside the pillar becoming large enough to support the sides of the pillar against radial collapse due to pressure from the surrounding hot plasma. This effect is particularly pronounced for the parallel component ($B_y$), which is consistent with observational results.} In contrast, a strong perpendicular ($B_x, B_z$) magnetic field ($\beta_{initial} < 1$) almost remains its initial distribution and significantly suppresses the expansion of blow-off gas plasma, leading to the inability to form pillar-like structures. The 3D simulations suggest that the bending at the head of `Column \uppercase\expandafter{\romannumeral1}' in pillars of creation may be due to the non-parallel magnetic fields. After similarity scaling transformation, our results can be applied to explain the formation and maintenance mechanism of the pillars, and can also provide useful information for future experimental designs.
43 pages, 18 figures, submitted to ApJ
We present a 400-800 MHz polarimetric analysis of 128 non-repeating fast radio bursts (FRBs) from the first CHIME/FRB baseband catalog, increasing the total number of FRB sources with polarization properties by a factor of ~3. Of the 128 sources, 89 FRBs have >6${\sigma}$ linearly polarized detections, 29 FRBs fall below this significance threshold and are deemed linearly unpolarized, and for 10 FRBs the polarization data are contaminated by instrumental polarization. For the 89 polarized FRBs, we find Faraday rotation measure (RM) amplitudes, after subtracting approximate Milky Way contributions, in the range 0.5-1160 rad m$^{-2}$ with a median of 53.8 rad m$^{-2}$. Most non-repeating FRBs in our sample have RMs consistent with Milky Way-like host galaxies and their linear polarization fractions range from ${\leq}$10% to 100% with a median of 63%. The non-repeater RMs and linear polarization fraction distributions are consistent with those of repeating FRBs. We see marginal evidence that non-repeating FRBs have more constraining lower limits than repeating FRBs for the host electron-density-weighted line-of-sight magnetic field strength. We classify the non-repeating FRB polarization position angle (PA) profiles into four archetypes: (i) single component with constant PA (57% of the sample), (ii) single component with variable PA (10%), (iii) multiple components with a single constant PA (22%), and (iv) multiple components with different or variable PAs (11%). We see no evidence for population-wide frequency-dependent depolarization and, therefore, the spread in the distribution of fractional linear polarization is likely intrinsic to the FRB emission mechanism.
24 pages, 13 figures, submitted to The Open Journal of Astrophysics. Classification of the Galactic globular clusters available at this https URL
Many observable properties of globular clusters (GCs) provide valuable insights for unveiling the hierarchical assembly of their host galaxy. For the Milky Way (MW) in particular, GCs from different accreted satellite galaxies show distinct chemical, spatial, kinematic, and age distributions. Here we examine such clustering features for model GC populations in simulated galaxies, which are carefully selected to match various observational constraints of the MW assembly. We evaluate several widely used clustering, dimensionality reduction, and supervised classification methods on these model GCs, using 10 properties that are observable in the MW. We can categorize in-situ and ex-situ formed GCs with about 90% accuracy, based solely on their clustering features in these 10 variables. The methods are also effective in distinguishing the last major merger in MW analogs with similar accuracy. Although challenging, we still find it possible to identify one, and only one, additional smaller satellite. We develop a new technique to classify the progenitors of MW GCs by combining several methods and weighting them by the validated accuracy. According to this technique, about 60% of GCs belong to the in-situ group, 20% are associated with the Gaia-Sausage/Enceladus event, and 10% are associated with the Sagittarius dwarf galaxy. The remaining 10% of GCs cannot be reliably associated with any single accretion event.
14 pages, 14 figures
Foreground removal is one of the biggest challenges in the detection of the Cosmic Dawn (CD) and Epoch of Reionization (EoR). Various foreground subtraction techniques have been developed based on the spectral smoothness of foregrounds. However, the sources with a spectral peak (SP) at Megahertz may break down the spectral smoothness at low frequencies (< 1000 MHz). In this paper, we cross-match the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) extragalactic source catalogue with three other radio source catalogues, covering the frequency range from 72 MHz to 1.4 GHz, to search for sources with spectral turnover. 4,423 sources from the GLEAM catalogue are identified as SP sources, representing approximately 3.2 per cent of the GLEAM radio source population. We utilize the properties of SP source candidates obtained from real observations to establish simulations and test the impact of SP sources on the extraction of CD/EoR signals. We statistically compare the differences introduced by SP sources in the residuals after removing the foregrounds with three methods, which are polynomial fitting, Principal Component Analysis (PCA), and fast independent component analysis (FastICA). Our results indicate that the presence of SP sources in the foregrounds has a negligible influence on extracting the CD/EoR signal. After foreground subtraction, the contribution from SP sources to the total power in the two-dimensional (2D) power spectrum within the EoR window is approximately 3 to 4 orders of magnitude lower than the CD/EoR signal.
13 pages, 8 figures
We study the impact of warm dark matter mass on the internal properties of individual galaxies using a large suite of 1,024 state-of-the-art cosmological hydrodynamic simulations from the DREAMS project. We take individual galaxies' properties from the simulations, which have different cosmologies, astrophysics, and warm dark matter masses, and train normalizing flows to learn the posterior of the parameters. We find that our models cannot infer the value of the warm dark matter mass, even when the values of the cosmological and astrophysical parameters are given explicitly. This result holds for galaxies with stellar mass larger than $2\times10^8 M_\odot/h$ at both low and high redshifts. We calculate the mutual information and find no significant dependence between the WDM mass and galaxy properties. On the other hand, our models can infer the value of $\Omega_{\rm m}$ with a $\sim10\%$ accuracy from the properties of individual galaxies while marginalizing astrophysics and warm dark matter masses.
Euclid Key Project paper, A&A submitted
Verifying the fully kinematic nature of the cosmic microwave background (CMB) dipole is of fundamental importance in cosmology. In the standard cosmological model with the Friedman-Lemaitre-Robertson-Walker (FLRW) metric from the inflationary expansion the CMB dipole should be entirely kinematic. Any non-kinematic CMB dipole component would thus reflect the preinflationary structure of spacetime probing the extent of the FLRW applicability. Cosmic backgrounds from galaxies after the matter-radiation decoupling, should have kinematic dipole component identical in velocity with the CMB kinematic dipole. Comparing the two can lead to isolating the CMB non-kinematic dipole. It was recently proposed that such measurement can be done using the near-IR cosmic infrared background (CIB) measured with the currently operating Euclid telescope, and later with Roman. The proposed method reconstructs the resolved CIB, the Integrated Galaxy Light (IGL), from Euclid's Wide Survey and probes its dipole, with a kinematic component amplified over that of the CMB by the Compton-Getting effect. The amplification coupled with the extensive galaxy samples forming the IGL would determine the CIB dipole with an overwhelming signal/noise, isolating its direction to sub-degree accuracy. We develop details of the method for Euclid's Wide Survey in 4 bands spanning 0.6 to 2 mic. We isolate the systematic and other uncertainties and present methodologies to minimize them, after confining the sample to the magnitude range with negligible IGL/CIB dipole from galaxy clustering. These include the required star-galaxy separation, accounting for the extinction correction dipole using the method newly developed here achieving total separation, accounting for the Earth's orbital motion and other systematic effects. (Abridged)
Published in Publications of the Astronomical Society of Japan. 6 pages, 3 figures
24 pages, 14 figures. Accepted in MNRAS
18 pages, 12 figures. Submitted. Comments welcome. Spindler available as a Python package on Zenodo: this https URL
Accepted for publication in PSJ; Table 2 is available in full in an ancillary file
13 pages and 10 figures
18 pages, 10 figures
23 pages, 10 figures, accepted for pulication in the Astronomical Journal
21 pages + 13 appendix pages, 16 figures + 5 appendix figures. Submitted to A&A
13 pages, 6 figures, submitted to PRD. arXiv admin note: text overlap with arXiv:2311.15656
Accepted in A&A. Previous to final editorial changes
Submitted to A&A
34 pages,19 figures, 5 tables, Accepted for publication in ApJ
Accepted for publication in Physical Review D
6 pages of main text, 8 pages total, 4 figures, 1 table. Presented at conference LTD20
16 pages, 7 figures. Resubmitted to AJ after minor revisions
15 pages, 9 figures, accepted by MNRAS
Under Review at MNRAS
18 pages, 9 figures, 1 table, comments are welcome!
11 pages, 4 figures, SCPMA accepted
21 pages, 8 figures, 5 ancillary mp4 files of subsurface flows for active regions 11158, 12673, 12882, 13006, and 13179; to appear in Dynamics of Solar and Stellar Convection Zones and Atmospheres, Proc. IAU Symp. 365, 2024
The European Physical Journal Plus accepted version
Accepted for publication in A&A, 13 pages, 16 figures
18 pages, 18 figures, submitted to MNRAS
11 pages, 2 tables, 6 figures, Accepted to be published in MNRAS
22 pages, 9 Figures - Accepted for publication in A&A
45 pages, 20 figures, accepted by and to be published in Astronomy & Astrophysics (A&A)
7 pages, 4 figures, pre-print
Accepted in ApJ
AJ, in press
7 figures
Submitted to ApJ (11 Pages, 2 Figures, 1 Table). Comments are welcome
9 pages, 12 figures. Comments are welcome
21 pages, 16 figures, 4 tables, submited to the Astrophysical Journal Supplement (ApJS) series
17 pages, 9 figures
6 pages (including references), 3 figures
6 pages, 3 figures
20 pages, contribution to 1st Training School of the COST Action COSMIC WISPers (CA21106)
7 pages, 4 figures
25 Pages, 10 figures. Reviewed by LIGO Scientific Collaboration (LSC) with LIGO Document Number P2200344
14 pages, 6 figures
11 pages, 8 figures
12 pages, 6 figures, 1 table