This DESI Collaboration Key Publication is part of the 2024 publication series using the first year of observations (see this https URL )
We present the measurement of Baryon Acoustic Oscillations (BAO) from the Lyman-$\alpha$ (Ly$\alpha$) forest of high-redshift quasars with the first-year dataset of the Dark Energy Spectroscopic Instrument (DESI). Our analysis uses over $420\,000$ Ly$\alpha$ forest spectra and their correlation with the spatial distribution of more than $700\,000$ quasars. An essential facet of this work is the development of a new analysis methodology on a blinded dataset. We conducted rigorous tests using synthetic data to ensure the reliability of our methodology and findings before unblinding. Additionally, we conducted multiple data splits to assess the consistency of the results and scrutinized various analysis approaches to confirm their robustness. For a given value of the sound horizon ($r_d$), we measure the expansion at $z_{\rm eff}=2.33$ with 2\% precision, $H(z_{\rm eff}) = (239.2 \pm 4.8) (147.09~{\rm Mpc} /r_d)$ km/s/Mpc. Similarly, we present a 2.4\% measurement of the transverse comoving distance to the same redshift, $D_M(z_{\rm eff}) = (5.84 \pm 0.14) (r_d/147.09~{\rm Mpc})$ Gpc. Together with other DESI BAO measurements at lower redshifts, these results are used in a companion paper to constrain cosmological parameters.
30 pages, 12 figures
Baryon Acoustic Oscillations can be measured with sub-percent precision above redshift two with the Lyman-alpha forest auto-correlation and its cross-correlation with quasar positions. This is one of the key goals of the Dark Energy Spectroscopic Instrument (DESI) which started its main survey in May 2021. We present in this paper a study of the contaminants to the lyman-alpha forest which are mainly caused by correlated signals introduced by the spectroscopic data processing pipeline as well as astrophysical contaminants due to foreground absorption in the intergalactic medium. Notably, an excess signal caused by the sky background subtraction noise is present in the lyman-alpha auto-correlation in the first line-of-sight separation bin. We use synthetic data to isolate this contribution, we also characterize the effect of spectro-photometric calibration noise, and propose a simple model to account for both effects in the analysis of the lyman-alpha forest. We then measure the auto-correlation of the quasar flux transmission fraction of low redshift quasars, where there is no lyman-alpha forest absorption but only its contaminants. We demonstrate that we can interpret the data with a two-component model: data processing noise and triply ionized Silicon and Carbon auto-correlations. This result can be used to improve the modeling of the lyman-alpha auto-correlation function measured with DESI.
Supporting publication of DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars
Baryon acoustic oscillations (BAO) provide a robust standard ruler to measure the expansion history of the Universe through galaxy clustering. Density-field reconstruction is now a widely adopted procedure for increasing the precision and accuracy of the BAO detection. With the goal of finding the optimal reconstruction settings to be used in the DESI 2024 galaxy BAO analysis, we assess the sensitivity of the post-reconstruction BAO constraints to different choices in our analysis configuration, performing tests on blinded data from the first year of DESI observations (DR1), as well as on mocks that mimic the expected clustering and selection properties of the DESI DR1 target samples. Overall, we find that BAO constraints remain robust against multiple aspects in the reconstruction process, including the choice of smoothing scale, treatment of redshift-space distortions, fiber assignment incompleteness, and parameterizations of the BAO model. We also present a series of tests that DESI followed in order to assess the maturity of the end-to-end galaxy BAO pipeline before the unblinding of the large-scale structure catalogs.
30 pages, 21 figures
A critical requirement of spectroscopic large scale structure analyses is correcting for selection of which galaxies to observe from an isotropic target list. This selection is often limited by the hardware used to perform the survey which will impose angular constraints of simultaneously observable targets, requiring multiple passes to observe all of them. In SDSS this manifested solely as the collision of physical fibers and plugs placed in plates. In DESI, there is the additional constraint of the robotic positioner which controls each fiber being limited to a finite patrol radius. A number of approximate methods have previously been proposed to correct the galaxy clustering statistics for these effects, but these generally fail on small scales. To accurately correct the clustering we need to upweight pairs of galaxies based on the inverse probability that those pairs would be observed (Bianchi \& Percival 2017). This paper details an implementation of that method to correct the Dark Energy Spectroscopic Instrument (DESI) survey for incompleteness. To calculate the required probabilitites, we need a set of alternate realizations of DESI where we vary the relative priority of otherwise identical targets. These realizations take the form of alternate Merged Target Ledgers (AMTL), the files that link DESI observations and targets. We present the method used to generate these alternate realizations and how they are tracked forward in time using the real observational record and hardware status, propagating the survey as though the alternate orderings had been adopted. We detail the first applications of this method to the DESI One-Percent Survey (SV3) and the DESI year 1 data. We include evaluations of the pipeline outputs, estimation of survey completeness from this and other methods, and validation of the method using mock galaxy catalogs.
36 pages, 9 figures. Supporting publication of DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars
In this paper, we present the estimation of systematics related to the halo occupation distribution (HOD) modeling in the baryon acoustic oscillations (BAO) distance measurement of the Dark Energy Spectroscopic Instrument (DESI) 2024 analysis. This paper focuses on the study of HOD systematics for luminous red galaxies (LRG). We consider three different HOD models for LRGs, including the base 5-parameter vanilla model and two extensions to it, that we refer to as baseline and extended models. The baseline model is described by the 5 vanilla HOD parameters, an incompleteness factor and a velocity bias parameter, whereas the extended one also includes a galaxy assembly bias and a satellite profile parameter. We utilize the 25 dark matter simulations available in the AbacusSummit simulation suite at $z=$ 0.8 and generate mock catalogs for our different HOD models. To test the impact of the HOD modeling in the position of the BAO peak, we run BAO fits for all these sets of simulations and compare the best-fit BAO-scaling parameters $\alpha_{\rm iso}$ and $\alpha_{\rm AP}$ between every pair of HOD models. We do this for both Fourier and configuration spaces independently, using post-reconstruction measurements. We find a 3.3$\sigma$ detection of HOD systematic for $\alpha_{\rm AP}$ in configuration space with an amplitude of 0.19%. For the other cases, we did not find a 3$\sigma$ detection, and we decided to compute a conservative estimation of the systematic using the ensemble of shifts between all pairs of HOD models. By doing this, we quote a systematic with an amplitude of 0.07% in $\alpha_{\rm iso}$ for both Fourier and configuration spaces; and of 0.09% in $\alpha_{\rm AP}$ for Fourier space.
Supporting publication of DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars
The Dark Energy Spectroscopic Instrument (DESI) will provide precise measurements of Baryon Acoustic Oscillations (BAO) to constrain the expansion history of the Universe and set stringent constraints on dark energy. Therefore, precise control of the global error budget due to various systematic effects is required for the DESI 2024 BAO analysis. In this work, we focus on the robustness of the BAO analysis against the Halo Occupation Distribution (HOD) modeling for the Emission Line Galaxy (ELG) tracer. Based on a common dark matter simulation, our analysis relies on HOD mocks tuned to early DESI data, namely the One-Percent survey data. To build the mocks, we use several HOD models for the ELG tracer as well as extensions to the baseline HOD models. Among these extensions, we consider distinct recipes for galactic conformity and assembly bias. We perform two independent analyses in the Fourier space and in the configuration space. We recover the BAO signal from two-point measurements after performing reconstruction on our mocks. Additionally, we also apply the control variates technique to reduce sample variance noise. Our BAO analysis can recover the isotropic BAO parameter $\alpha_\text{iso}$ within 0.1\% and the Alcock Paczynski parameter $\alpha_\text{AP}$ within 0.3\%. Overall, we find that our systematic error due to the HOD dependence is below 0.17\%, with the Fourier space analysis being more robust against the HOD systematics. We conclude that our analysis pipeline is robust enough against the HOD systematics for the ELG tracer in the DESI 2024 BAO analysis.
17 pages, 8 figures, 1 table. Submitted to MNRAS
We present a simple, differentiable method for predicting emission line strengths from rest-frame optical continua using an empirically-determined mapping. Extensive work has been done to develop mock galaxy catalogues that include robust predictions for galaxy photometry, but reliably predicting the strengths of emission lines has remained challenging. Our new mapping is a simple neural network implemented using the JAX Python automatic differentiation library. It is trained on Dark Energy Spectroscopic Instrument Early Release data to predict the equivalent widths (EWs) of the eight brightest optical emission lines (including H$\alpha$, H$\beta$, [O II], and [O III]) from a galaxy's rest-frame optical continuum. The predicted EW distributions are consistent with the observed ones when noise is accounted for, and we find Spearman's rank correlation coefficient $\rho_s > 0.87$ between predictions and observations for most lines. Using a non-linear dimensionality reduction technique (UMAP), we show that this is true for galaxies across the full range of observed spectral energy distributions. In addition, we find that adding measurement uncertainties to the predicted line strengths is essential for reproducing the distribution of observed line-ratios in the BPT diagram. Our trained network can easily be incorporated into a differentiable stellar population synthesis pipeline without hindering differentiability or scalability with GPUs. A synthetic catalogue generated with such a pipeline can be used to characterise and account for biases in the spectroscopic training sets used for training and calibration of photo-$z$'s, improving the modelling of systematic incompleteness for the Rubin Observatory LSST and other surveys.
36 pages, 15 figures, 3 tables, to be submitted to JCAP; comments welcome
Ongoing and upcoming galaxy redshift surveys, such as the Dark Energy Spectroscopic Instrument (DESI) survey, will observe vast regions of sky and a wide range of redshifts. In order to model the observations and address various systematic uncertainties, $N$-body simulations are routinely adopted, however, the number of large simulations with sufficiently high mass resolution is usually limited by available computing time. Therefore, achieving a simulation volume with the effective statistical errors significantly smaller than those of the observations becomes prohibitively expensive. In this study, we apply the Convergence Acceleration by Regression and Pooling (CARPool) method to mitigate the sample variance of the DESI-like galaxy clustering in the AbacusSummit simulations, with the assistance of the quasi-$N$-body simulations FastPM. Based on the halo occupation distribution (HOD) models, we construct different FastPM galaxy catalogs, including the luminous red galaxies (LRGs), emission line galaxies (ELGs), and quasars, with their number densities and two-point clustering statistics well matched to those of AbacusSummit. We also employ the same initial conditions between AbacusSummit and FastPM to achieve high cross-correlation, as it is useful in effectively suppressing the variance. Our method of reducing noise in clustering is equivalent to performing a simulation with volume larger by a factor of 5 and 4 for LRGs and ELGs, respectively. We also mitigate the standard deviation of the LRG bispectrum with the triangular configurations $k_2=2k_1=0.2\hMpc$ by a factor of 1.6. With smaller sample variance on galaxy clustering, we are able to constrain the BAO scale parameters to higher precision. The CARPool method will be beneficial to better constrain the theoretical systematics of BAO, redshift space distortions (RSD) and primordial non-Gaussianity.
16 pages, 6 figures, accepted for publication in ApJL
Solar prominences, intricate structures on the Sun's limb, have been a subject of fascination due to their thread-like features and dynamic behaviors. Utilizing data from the New Vacuum Solar Telescope (NVST), Chinese H_alpha Solar Explorer (CHASE), and Solar Dynamics Observatory (SDO), this study investigates the transverse swaying motions observed in the vertical threads of a solar prominence during its eruption onset on May 11, 2023. The transverse swaying motions were observed to propagate upward, accompanied by upflowing materials at an inclination of 31 degrees relative to the plane of the sky. These motions displayed small-amplitude oscillations with corrected velocities of around 3-4 km/s and periods of 13-17 minutes. Over time, the oscillations of swaying motion exhibited an increasing pattern in displacement amplitudes, oscillatory periods, and projected velocity amplitudes. Their phase velocities are estimated to be about 26-34 km/s. An important finding is that these oscillations'phase velocities are comparable to the upward flow velocities, measured to be around 30-34 km/s. We propose that this phenomenon is associated with negative-energy wave instabilities, which require comparable velocities of the waves and flows, as indicated by our findings. This phenomenon may contribute to the instability and observed disruption of the prominence. By using prominence seismology, the Alfven speed and magnetic field strength of the vertical threads have been estimated to be approximately 21.5 km/s and 2 Gauss, respectively. This study reveals the dynamics and magnetic properties of solar prominences, contributing to our understanding of their behavior in the solar atmosphere.
41 pages, 31 figures, submitted to the AAS journals. Comments are welcome
The Dark Energy Spectroscopic Instrument (DESI) cosmology survey includes a Bright Galaxy Survey (BGS) which will yield spectra for over ten million bright galaxies (r<20.2 AB mag). The resulting sample will be valuable for both cosmological and astrophysical studies. However, the star/galaxy separation criterion implemented in the nominal BGS target selection algorithm excludes quasar host galaxies in addition to bona fide stars. While this excluded population is comparatively rare (~3-4 per square degrees), it may hold interesting clues regarding galaxy and quasar physics. Therefore, we present a target selection strategy that was implemented to recover these missing active galactic nuclei (AGN) from the BGS sample. The design of the selection criteria was both motivated and confirmed using spectroscopy. The resulting BGS-AGN sample is uniformly distributed over the entire DESI footprint. According to DESI survey validation data, the sample comprises 93% quasi-stellar objects (QSOs), 3% narrow-line AGN or blazars with a galaxy contamination rate of 2% and a stellar contamination rate of 2%. Peaking around redshift z=0.5, the BGS-AGN sample is intermediary between quasars from the rest of the BGS and those from the DESI QSO sample in terms of redshifts and AGN luminosities. The stacked spectrum is nearly identical to that of the DESI QSO targets, confirming that the sample is dominated by quasars. We highlight interesting small populations reaching z>2 which are either faint quasars with nearby projected companions or very bright quasars with strong absorption features including the Lyman-apha forest, metal absorbers and/or broad absorption lines.
51 pages, 7 figures. Working Group details: this https URL
13 pages, 14 figures. Submitted to MMRAS. Comments welcome!
20 pages, 15 figures. Accepted for publication in A&A
A&A accepted for publication, 9 pages, 4 figures, 1 table
Accepted to ApJ, 16 pages, 8 figures
9 pages; submitted to MNRAS
Accepted for publication in Astronomy & Astrophysics on 30/03/2024. Electronic material (spectroscopic time series, table A1) will soon be available on the CDS or upon request to the first author. 10 pages, 9 figures, and 3 tables
15 pages, 14 figures, 3 tables, accepted for publication in The Astrophysical Journal
18 pages, 14 figures, accepted for publication in A&A
14 pages, 5 figures
13 pages, 6 figures, to be published in Optics Continuum
This DESI Collaboration Key Publication is part of the 2024 publication series using the first year of observations (see this https URL )
This DESI Collaboration Key Publication is part of the 2024 publication series using the first year of observations (see this https URL )
Supporting publication of DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Forest
Supporting publication of DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars. 29 pages, 4 figures. Code available at this https URL and this https URL Data points from the plots (and some extras) are available at this https URL
25 pages, 20 figures
22 pages, 44 figures, accepted by MNRAS
8 pages, 13 figures
Words in text: 4315 Words in headers: 29 Words outside text (captions, etc.): 293 Number of headers: 10 Number of floats/tables/figures: 5 Number of math inlines: 165 Number of math displayed: 3
26 pages, 12 figures, 3 tables. Submitted to A&A, under review (1st revision)
19 pages, 11 figures, accepted for publication in ApJ
17 pages, 11 figures, submitted to ApJ
16 pages, 12 figures. Submitted to MNRAS. Comments welcome!
Comments are welcome!
14 pages, 17 figures. Resubmitted to A&A
12 pages, 7 figures, comments welcome :)
17 pages, 8 figures, published version by ApJ
Submitted to MNRAS. Comments welcome!
Accepted for publication in A&A; 16 pages and 10 figures
13 pages, 9 figures, accepted for publication in A&A
Accepted for publication in A&A
9 pages, 3 figures
19 pages, 12 figures; ApJ Accepted
22 pages, 8 figures, 3 tables, 2 appendix - Accepted for publication in The Astrophysical Journal
Journal of High Energy Astrophysics accepted version
to appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Sciences
14 pages, 10 figures, accepted for publication in A&A
25 pages, 11 figures, 4 tables, accepted for publication in the Bulgarian Astronomical Journal
This paper is accepted for publication in MNRAS
20 pages, 10 figures, accepted for publication on A&A
18 pages, 9 figures, accepted for publication in the ApJ
17 pages, 22 figures, code available at this https URL
50 pages, accepted to The Astronomy and Astrophysics Review
22 pages, 13 figures
44 pages, 29 figures
23 pages, 17 figures, submitted to ApJ
12 pages, 6 figures
18 pages, 3 figures, 5 tables. Sledgehamr is available on GitHub at this https URL
22 pages, 1 figure
10+6 pages, 12 figures. Appendix C2 based on arxiv: 2206.11927 . Code, demos, documentation at this https URL
16 pages, 6 figures
14 pages, 7 figures, 1 table