Spiral arms are some of the most spectacular features in disc galaxies, and also present in our own Milky Way. It has been argued that star formation should proceed more efficiently in spiral arms as a result of gas compression. Yet, observational studies have so far yielded contradictory results. Here we examine arm/interarm surface density contrasts at ~100 pc resolution in 28 spiral galaxies from the PHANGS survey. We find that the arm/interarm contrast in stellar mass surface density (Sigma_*) is very modest, typically a few tens of percent. This is much smaller than the contrasts measured for molecular gas (Sigma_mol) or star formation rate (Sigma_SFR) surface density, which typically reach a factor of ~2-3. Yet, Sigma_mol and Sigma_SFR contrasts show a significant correlation with the enhancement in Sigma_*, suggesting that the small stellar contrast largely dictates the stronger accumulation of gas and star formation. All these contrasts increase for grand-design spirals compared to multi-armed and flocculent systems (and for galaxies with high stellar mass). The median star formation efficiency (SFE) of the molecular gas is 16% higher in spiral arms than in interarm regions, with a large scatter, and the contrast increases significantly (median SFE contrast 2.34) for regions of particularly enhanced stellar contrast (Sigma_* contrast >1.97). The molecular-to-atomic gas ratio (Sigma_mol/Sigma_atom) is higher in spiral arms, pointing to a transformation of atomic to molecular gas. In conclusion, the boost in the star formation efficiency of molecular gas in spiral arms is generally modest or absent, except for locations with exceptionally large stellar contrasts. (abridged)
The Simons Observatory (SO) is a cosmic microwave background (CMB) survey experiment that includes small-aperture telescopes (SATs) observing from an altitude of 5,200 m in the Atacama Desert in Chile. The SO SATs will cover six spectral bands between 27 and 280 GHz to search for primordial B-modes to a sensitivity of $\sigma(r)=0.002$, with quantified systematic errors well below this value. Each SAT is a self-contained cryogenic telescope with a 35$^\circ$ field of view, 42 cm diameter optical aperture, 40 K half-wave plate, 1 K refractive optics, and $<0.1$ K focal plane that holds $>12,000$ TES detectors. We describe the nominal design of the SATs and present details about the integration and testing for one operating at 93 and 145 GHz.
Optimal extraction of cosmological information from observations of the Cosmic Microwave Back- ground critically relies on our ability to accurately undo the distortions caused by weak gravitational lensing. In this work, we demonstrate the use of denoising diffusion models in performing Bayesian lensing reconstruction. We show that score-based generative models can produce accurate, uncor- related samples from the CMB lensing convergence map posterior, given noisy CMB observations. To validate our approach, we compare the samples of our model to those obtained using established Hamiltonian Monte Carlo methods, which assume a Gaussian lensing potential. We then go beyond this assumption of Gaussianity, and train and validate our model on non-Gaussian lensing data, obtained by ray-tracing N-body simulations. We demonstrate that in this case, samples from our model have accurate non-Gaussian statistics beyond the power spectrum. The method provides an avenue towards more efficient and accurate lensing reconstruction, that does not rely on an approx- imate analytic description of the posterior probability. The reconstructed lensing maps can be used as an unbiased tracer of the matter distribution, and to improve delensing of the CMB, resulting in more precise cosmological parameter inference.
The unified dark fluid model unifies dark matter and dark energy into a single component, providing an alternative and more concise framework for interpreting cosmological observations. We introduce a PAge-like Unified Dark Fluid (PUDF) model based on the PAge approximation (Huang 2020), which is parameterized by the age of the universe and an $\eta$ parameter indicating the deviation from Einstein-De Sitter Universe. The PUDF model shares many similar features of the standard Lambda cold dark matter ($\Lambda$CDM) model and can effectively describe the large-scale structure formation and late-time cosmic acceleration. We constrain the PUDF model with the Planck 2018 cosmic microwave background anisotropies, baryon acoustic oscillation measurements including those from the most recent DESI 2024, the Pantheon+ sample of Type Ia supernovae, and the Cosmic Chronometers compilation. Although the PUDF performs well in fitting all the cosmological datasets, the joint analysis of the data still favors the $\Lambda$CDM model over the PUDF model, according to the Bayesian evidence of model comparison.