Bosonic fields (within suitable mass range) may be collectively generated by rotating black holes through the black hole superradiance process. The resulting black hole is surrounded by a ``cloud" of particles whose wave function populates the superradiant energy level of the black hole. For comparable mass ratio binary black hole systems, it has been suggested that these clouds often deplete at large binary separations because of level mixing effects. As a result, these clouds may not be dynamically relevant for black hole and neutron star binaries that enter the LIGO-Virgo-KAGRA and LISA detection frequency band. In this work, we point out that the common envelope process during a compact binary evolution may bring the binary to $\sim 0.01$AU in hundreds to thousands of years, so that depletion caused by certain level mixings are no longer important. We derive a relevant regime of binary parameters where the clouds are still present for binary entering the LISA band, and show that common envelop process does enlarge such parameter regime. When the binary separation further decreases due to gravitational wave radiation, we discuss the impact of possible cloud mass transfer between the binary objects.
Discovering transiting exoplanets with relatively long orbital periods ($>$10 days) is crucial to facilitate the study of cool exoplanet atmospheres ($T_{\rm eq} < 700 K$) and to understand exoplanet formation and inward migration further out than typical transiting exoplanets. In order to discover these longer period transiting exoplanets, long-term photometric and radial velocity campaigns are required. We report the discovery of TOI-2447 b ($=$ NGTS-29b), a Saturn-mass transiting exoplanet orbiting a bright (T=10.0) Solar-type star (T$_{\rm eff}$=5730 K). TOI-2447 b was identified as a transiting exoplanet candidate from a single transit event of 1.3% depth and 7.29 h duration in $TESS$ Sector 31 and a prior transit event from 2017 in NGTS data. Four further transit events were observed with NGTS photometry which revealed an orbital period of P=69.34 days. The transit events establish a radius for TOI-2447 b of $0.865 \pm 0.010\rm R_{\rm J}$, while radial velocity measurements give a mass of $0.386 \pm 0.025 \rm M_{\rm J}$. The equilibrium temperature of the planet is $414$ K, making it much cooler than the majority of $TESS$ planet discoveries. We also detect a transit signal in NGTS data not caused by TOI-2447 b, along with transit timing variations and evidence for a $\sim$150 day signal in radial velocity measurements. It is likely that the system hosts additional planets, but further photometry and radial velocity campaigns will be needed to determine their parameters with confidence. TOI-2447 b/NGTS-29b joins a small but growing population of cool giants that will provide crucial insights into giant planet composition and formation mechanisms.
Fast Radio Bursts (FRBs) are short-duration radio transients that occur at random times in host galaxies distributed all over the sky. Large field of view instruments can play a critical role in the blind search for rare FRBs. We present a concept for an all-sky FRB monitor using a compact all-sky phased array (CASPA), which can efficiently achieve an extremely large field of view of $\sim10^4$ square degrees. Such a system would allow us to conduct a continuous, blind FRB search covering the entire southern sky. Using the measured FRB luminosity function, we investigate the detection rate for this all-sky phased array and compare the result to a number of other proposed large field-of-view instruments. We predict a rate of a few FRB detections per week and determine the dispersion measure and redshift distributions of these detectable FRBs. This instrument is optimal for detecting FRBs in the nearby Universe and for extending the high-end of the FRB luminosity function through finding ultraluminous events. Additionally, this instrument can be used to shadow the new gravitational-wave observing runs, detect high energy events triggered from Galactic magnetars and search for other bright, but currently unknown transient signals.
In this work, we report a study on the relationship between flux and intensity for molecular clouds. Our analysis is established on high-quality CO images from the Milky Way Imaging Scroll Painting (MWISP) project. The new flux-intensity relation characterizes the flux variation of molecular clouds above specific intensity levels. We found that the flux-intensity relation exhibits two prominent features. First, the flux-intensity relation generally follows exponential shapes; secondly, hierarchical structures of molecular clouds are imprinted on flux-intensity relations. Specifically, 12CO flux-intensity relations are composed of one or more exponential segments, and for molecular clouds with segmented flux-intensity relations, the edge and the flux of the high-temperature component are strikingly consistent with 13CO emission. Further analysis shows that a similar relationship also exists between 13CO flux-intensity relations and C18O emission. The mean brightness temperature of molecular clouds is tightly associated with the decay rate of flux, the break temperature of exponential segments, and, to a certain extent, the flux fraction of the high-temperature component. Broadly, the flux-intensity relation of a molecular tracer, either in optically thick or in optically thin cases, has the capability to outline the silhouette of internal structures of molecular clouds, proving to be a potent tool for probing structures of molecular clouds.
The first source catalog of Large High Altitude Air Shower Observatory reported the detection of a very-high-energy gamma ray source, 1LHAASO J1219+2915. In this paper a further detailed study of the spectral and temporal behavior of this point-like source have been carried. The best-fit position of the TeV source ($\rm{RA}=185.05^{\circ}\pm0.04^{\circ}$, $\rm{Dec}=29.25^{\circ}\pm0.03^{\circ}$) is compatible with NGC 4278 within $\sim0.03$ degree. Variation analysis shows an indication of the variability at a few months level in the TeV band, which is consistent with low frequency observations. Based on these observations, we report the detection of TeV $\gamma$-ray emissions from this low-luminosity AGN NGC 4278. The observations by LHAASO-WCDA during active period has a significance level of 8.8\,$\sigma$ with best-fit photon spectral index $\varGamma=2.56\pm0.14$ and a flux $f_{1-10\,\rm{TeV}}=(7.0\pm1.1_{\rm{sta}}\pm0.35_{\rm{syst}})\times10^{-13}\,\rm{photons\,cm^{-2}\,s^{-1}}$, or approximately $5\%$ of the Crab Nebula. The discovery of VHE from NGC 4278 indicates that the compact, weak radio jet can efficiently accelerate particles and emit TeV photons.
We present a coherent, re-usable python framework which further builds on the cosmological emulator code CosmoPower. In the current era of high-precision cosmology, we require high-accuracy calculations of cosmological observables with Einstein-Boltzmann codes. For detailed statistical analyses, such codes often incur high costs in terms of computing power, making parameter space exploration costly, especially for beyond-$\Lambda$CDM analyses. Machine learning-enabled emulators of Einstein-Boltzmann codes have emerged as a solution to this problem and have become a common way to perform fast cosmological analyses. To enable generation, sharing and use of emulators for inference, we define standards for robustly describing, packaging and distributing them, and present software for easily performing these tasks in an automated and replicable manner. We provide examples and guidelines for generating your own sufficiently accurate emulators and wrappers for using them in popular cosmological inference codes. We demonstrate our framework by presenting a suite of high-accuracy emulators for the CAMB code's calculations of CMB $C_\ell$, $P(k)$, background evolution, and derived parameter quantities. We show that these emulators are accurate enough for both $\Lambda$CDM analysis and a set of single- and two-parameter extension models (including $N_{\rm eff}$, $\sum m_{\nu}$ and $w_0 w_a$ cosmologies) with stage-IV observatories, recovering the original high-accuracy Einstein-Boltzmann spectra to tolerances well within the cosmic variance uncertainties across the full range of parameters considered. We also use our emulators to recover cosmological parameters in a simulated cosmic-variance limited experiment, finding results well within $0.1 \sigma$ of the input cosmology, while requiring typically $\lesssim1/50$ of the evaluation time than for the full Einstein-Boltzmann computation.
We present early-phase good cadence simultaneous multi-band ($ugi$, $vrz$--bands) imaging of nearby supernova SN 2024ggi, which exploded in the nearby galaxy, NGC~3621. A quick follow-up was conducted within less than a day after the explosion and continued $\sim$23 days. The $uvg$-band light curves display a rapid rise ($\sim$1.4 mag day$^{-1}$) to maximum in $\sim$4 days and absolute magnitude $M_{g}\sim$--17.75 mag. The post-peak decay rate in redder bands is $\sim$0.01 mag day$^{-1}$. Different colors (e.g., $u-g$ and $v-r$) of SN~2024ggi are slightly redder than SN~2023ixf. A significant rise ($\sim$12.5 kK) in black-body temperature (optical) was noticed within $\sim$2 days after the explosion, which successively decreased, indicating shock break out inside a dense circumstellar medium (CSM) surrounding the progenitor. Using semi-analytical modeling, the ejecta mass and progenitor radius were estimated as 1.2 M$_{\odot}$ and $\sim$550 R$_{\odot}$, respectively. The archival deep images ($g,r,i,z$-bands) from the Dark Energy Camera Legacy Survey (DECaLS) were examined, and a possible progenitor was detected in each band ($\sim$22--22.5 mag) and had a mass range of 14--17 M$_{\odot}$.