We present an updated characterization of the TOI-1685 planetary system, which consists of a P$_{\rm{b}}$ = 0.69\,day USP super-Earth planet orbiting a nearby ($d$ = 37.6\,pc) M2.5V star (TIC 28900646, 2MASS J04342248+4302148). This planet was previously featured in two contemporaneous discovery papers, but the best-fit planet mass, radius, and bulk density values were discrepant allowing it to be interpreted either as a hot, bare rock or a 50\% H$_{2}$O / 50\% MgSiO$_{3}$ water world. TOI-1685 b will be observed in three independent JWST cycle two programs, two of which assume the planet is a water world while the third assumes that it is a hot rocky planet. Here we include a refined stellar classification with a focus on addressing the host star's metallicity, an updated planet radius measurement that includes two sectors of TESS data and multi-color photometry from a variety of ground-based facilities, and a more accurate dynamical mass measurement from a combined CARMENES, IRD, and MAROON-X radial velocity data set. We find that the star is very metal-rich ([Fe/H] $\simeq$ +0.3) and that the planet is systematically smaller, lower mass, and higher density than initially reported, with new best-fit parameters of \Rpl = 1.468 $^{+0.050}_{-0.051}$ \Rearth\ and \Mpl = 3.03$^{+0.33}_{-0.32}$ \Mearth. These results fall in between the previously derived values and suggest that TOI-1685 b is a hot, rocky, planet with an Earth-like density (\Rhopl = 5.3 $\pm$ 0.8 g cm$^{-3}$, or 0.96 \rhoearth), high equilibrium temperature (T$_{\rm{eq}}$ = 1062 $\pm$ 27 K) and negligible volatiles, rather than a water world.