It is well known that almost all isolated dwarf galaxies are actively forming stars. We report the discovery of Hedgehog, an isolated quiescent dwarf galaxy at a distance of $2.41\pm0.14$ Mpc with a stellar mass of $M_\star \approx 10^{5.8}\, M_\odot$. The distance is measured using surface brightness fluctuations with both Legacy Surveys and deep Magellan/IMACS imaging data. Hedgehog is 1.7 Mpc from the nearest galaxy group, Centaurus A, and has no neighboring galaxies within 1 Mpc, making it one of the most isolated quiescent dwarfs at this stellar mass. It has a red optical color, early-type morphology, and shows no UV emission. This indicates that Hedgehog has an old stellar population and is quiescent in star formation. Compared with other quiescent dwarfs in the Local Group and Local Volume, Hedgehog appears smaller in size for its luminosity but is consistent with the mass--size relations. Hedgehog might be a backsplash galaxy from the Centaurus A group, but it could also have been quenched in the field by ram pressure stripping in the cosmic web, reionization, or internal processes such as supernova and stellar feedback. Future observations are needed to fully unveil its formation, history, and quenching mechanisms.
We present JWST observations of the Crab Nebula, the iconic remnant of the historical SN 1054. The observations include NIRCam and MIRI imaging mosaics, plus MIRI/MRS IFU spectra that probe two select locations within the ejecta filaments. We derive a high-resolution map of dust emission and show that the grains are concentrated in the innermost, high-density filaments. These dense filaments coincide with multiple synchrotron bays around the periphery of the Crab's pulsar wind nebula (PWN). We measure synchrotron spectral index changes in small-scale features within the PWN's torus region, including the well-known knot and wisp structures. The index variations are consistent with Doppler boosting of emission from particles with a broken power-law distribution, providing the first direct evidence that the curvature in the particle injection spectrum is tied to the acceleration mechanism at the termination shock. We detect multiple nickel and iron lines in the ejecta filaments and use photoionization models to derive nickel-to-iron abundance ratios that are a factor of 3-8 higher than the solar ratio. We also find that the previously reported order-of-magnitude higher Ni/Fe values from optical data are consistent with the lower values from JWST when we reanalyze the optical emission using updated atomic data and account for local extinction from dust. We discuss the implications of our results for understanding the nature of the explosion that produced the Crab Nebula and conclude that the observational properties are most consistent with a low-mass iron-core-collapse supernova, even though an electron-capture explosion cannot be ruled out.
Motivated by the need for realistic, dynamically self-consistent, evolving galaxy models that avoid the inherent complexity of full, and zoom-in, cosmological simulations, we have developed Nexus, an integral, flexible framework to create synthetic galaxies made of both collisionless and gaseous components. Nexus leverages the power of publicly available, tried-and-tested packages: i) the stellar-dynamics, action-based library AGAMA; and ii) the Adaptive Mesh Refinement, N-body/hydrodynamical code Ramses, modified to meet our needs. In addition, we make use of a proprietary module to account for realistic galaxy formation (sub-grid) physics, including star formation, stellar feedback, and chemical enrichment. As a framework to perform controlled experiments of idealised galaxies, Nexus' basic functionality consists in the generation of bespoke initial conditions (ICs) for any desired galaxy model, which are advanced in time to simulate the system's evolution. The fully self-consistent ICs are generated with a distribution-function based approach, as implemented in the galaxy modelling module of AGAMA -- up to now restricted to collisionless components, extended in this work to treat two types of gaseous configurations: (i) hot halos; and (ii) gas disks. For the first time, we are able to construct equilibrium models with disc gas fractions in the range $0 < f_{\rm gas} < 1$, needed to model high-redshift galaxies. The framework is ideally suited to the study of galactic ecology, specifically how stars and gas work together over billions of years. As a validation of our framework, we reproduce - and improve upon - several isolated galaxy model setups reported in earlier studies. Finally, we showcase Nexus by presenting an interesting type of `nested bar' galaxy class. Future upgrades of Nexus will include magneto-hydrodynamics and highly energetic particle (`cosmic ray') heating.
Filament eruption is a common phenomenon in solar activity, but the triggering mechanism is not well understood. We focus our study on a filament eruption located in a complex nest of three active regions close to a coronal hole. The filament eruption is observed at multiple wavelengths: by the GONG, the STEREO, the SUTRI, and the AIA and Helioseismic and Magnetic Imager (HMI) on board the SDO. Thanks to high temporal-resolution observations, we were able to analyze the evolution of the fine structure of the filament in detail. The filament changes direction during the eruption, which is followed by a halo coronal mass ejection detected by the LASCO on board the SOHO. A Type III radio burst was also registered at the time of the eruption. To investigate the process of the eruption, we analyzed the magnetic topology of the filament region adopting a nonlinear force-free-field (NLFFF) extrapolation method and the polytropic global magnetohydrodynamic (MHD) modeling. We modeled the filament by embeddingatwisted fluxropewiththe regularized Biot-Savart Laws (RBSL) method in the ambient magnetic f ield. The extrapolation results show that magnetic reconnection occurs in a fan-spine configuration resulting in a circular flare ribbon. The global modeling of the corona demonstrates that there was an interaction between the filament and open field lines, causing a deflection of the filament in the direction of the observed CME eruption and dimming area. The modeling supports the following scenario: magnetic reconnection not only occurs with the filament itself (the flux rope) but also with the background magnetic field lines and open field lines of the coronal hole located to the east of the flux rope. This multiwavelength analysis indicates that the filament undergoes multiple magnetic reconnections on small and large scales with a drifting of the flux rope.
We develop an in-situ index of refraction profile using the transit time of radio signals broadcast from an englacial transmitter to 2-5 km distant radio-frequency receivers, deployed at depths up to 200 m. Maxwell's equations generally admit two ray propagation solutions from a given transmitter, corresponding to a direct path (D) and a refracted path (R); the measured D vs. R (dt(D,R)) timing differences provide constraints on the index of refraction profile near South Pole, where the Askaryan Radio Array (ARA) neutrino observatory is located. We constrain the refractive index profile by simulating D and R ray paths via ray tracing and comparing those to measured dt(D,R) signals. Using previous ice density data as a proxy for n(z), we demonstrate that our data strongly favors a glaciologically-motivated three-phase densification model rather than a single exponential scale height model. Simulations show that the single exponential model overestimates ARA neutrino sensitivity compared to the three-phase model.
this https URL . Work in progress. Comments are welcome
Identifying and predicting the factors that contribute to the success of interdisciplinary research is crucial for advancing scientific discovery. However, there is a lack of methods to quantify the integration of new ideas and technological advancements in astronomical research and how these new technologies drive further scientific breakthroughs. Large language models, with their ability to extract key concepts from vast literature beyond keyword searches, provide a new tool to quantify such processes. In this study, we extracted concepts in astronomical research from 297,807 publications between 1993 and 2024 using large language models, resulting in a set of 24,939 concepts. These concepts were then used to form a knowledge graph, where the link strength between any two concepts was determined by their relevance through the citation-reference relationships. By calculating this relevance across different time periods, we quantified the impact of numerical simulations and machine learning on astronomical research. The knowledge graph demonstrates two phases of development: a phase where the technology was integrated and another where the technology was explored in scientific discovery. The knowledge graph reveals that despite machine learning has made much inroad in astronomy, there is currently a lack of new concept development at the intersection of AI and Astronomy, which may be the current bottleneck preventing machine learning from further transforming the field of astronomy.
this http URL ). Submitted for publication in Research Notes of the AAS