The tip of the red giant (TRGB) is a standardizable candle and is identifiable as the discontinuity at the bright extreme of the red giant branch (RGB) stars in color-magnitude diagram (CMD) space. The TRGB-based distance method has been calibrated and used to measured distances to galaxies out to $D\leq20$ Mpc with the $I$-band equivalent Hubble Space Telescope ($HST$) $F814W$ filter, and as an important rung in the distance ladder to measure the Hubble constant, $H_0$. In the infrared (IR), the TRGB apparent magnitude ranges from $1-2$ magnitudes brighter than in the optical, and now with the IR James Webb Space Telescope ($JWST$) observatory the feasible distance range of the TRGB method can be extended to $\sim50$ Mpc. However, in the IR the TRGB luminosity depends to varying degrees on stellar metallicity and age. In this study we standardize the TRGB luminosity using stellar colors as a proxy for metallicity/age to derive color-based corrections for the $JWST$ Near-Infrared Camera (NIRCam) short wavelength (SW) filters $F090W$, $F115W$, $F150W$ and the long wavelength (LW) filters $F277W$, $F356W,$ and $F444W$. We provide recommended filter combinations for distance measurements depending on the requisite precision. For science requiring high precision ($\leq1\%$ in distance) and robustness we recommend measuring the TRGB in $F090W$ vs $F090W-F150W$ or $F115W$ vs. $F115W-F277W$ with the caveat that even with $JWST$ long integration times will be necessary at further distances. If lower precision ($>1.5\%$ in distance) can be tolerated, or if shorter integration times are desirable, we recommend measuring the TRGB in either $F115W$ or $F150W$ paired with $F356W$. We do not recommend $F444W$ for precision TRGB measurements due to its lower angular resolution.
We present JWST NIRCam (F356W and F444W filters) and MIRI (F770W) images and NIRSpec- IFU spectroscopy of the young supernova remnant Cassiopeia A (Cas A). We obtained the data as part of a JWST survey of Cas A. The NIRCam and MIRI images map the spatial distributions of synchrotron radiation, Ar-rich ejecta, and CO on both large and small scales, revealing remarkably complex structures. The CO emission is stronger at the outer layers than the Ar ejecta, which indicates the reformation of CO molecules behind the reverse shock. NIRSpec-IFU spectra (3 - 5.5 microns) were obtained toward two representative knots in the NE and S fields. Both regions are dominated by the bright fundamental rovibrational band of CO in the two R and P branches, with strong [Ar VI] and relatively weaker, variable strength ejecta lines of [Si IX], [Ca IV], [Ca V] and [Mg IV]. The NIRSpec-IFU data resolve individual ejecta knots and filaments spatially and in velocity space. The fundamental CO band in the JWST spectra reveals unique shapes of CO, showing a few tens of sinusoidal patterns of rovibrational lines with pseudo-continuum underneath, which is attributed to the high-velocity widths of CO lines. The CO also shows high J lines at different vibrational transitions. Our results with LTE modeling of CO emission indicate a temperature of 1080 K and provide unique insight into the correlations between dust, molecules, and highly ionized ejecta in supernovae, and have strong ramifications for modeling dust formation that is led by CO cooling in the early Universe.
We propose a new cosmological model that considers dark matter as a barotropic fluid with a constant equation of state parameter and interprets dark energy as the phenomenological emergent dark energy rather than a cosmological constant. This proposal is based on extensive research on the extended properties of dark matter in the context of a cosmological constant and the intriguing findings that have emerged from our exploration of dark matter properties within the context of PEDE in our previous studies. We then place constraints on this model in light of the Planck 2018 Cosmic Microwave Background (CMB) anisotropies, baryon acoustic oscillation (BAO) measurements, the Pantheon compilation of Type Ia supernovae, a prior on $H_0$ that based on the latest local measurement by Riess et al., and the combination of KiDS and the VISTA Kilo-Degree Infrared Galaxy Survey (KiDS+VIKING-450). The results indicate a preference for a positive dark matter equation of state parameter at 68\% confidence level for CMB+BAO, CMB+BAO+Pantheon and CMB+BAO+Pantheon+$H_0$ datasets. Furthermore, the Hubble tension between all of the datasets we used with R22 is very close to those of the PEDE, and the $S_8$ tension between Planck 2018 and KiDS+VIKING-450 is reduced from 2.3$\sigma$ in the PEDE model to 0.4$\sigma$ in the new model. However, Bayesian evidence indicates that PEDE favors our new model with very strong evidence from all the datasets considered in this study. Consequently, we conclude that the PEDE+$w_{\rm dm}$ model is not a viable alternative to the PEDE model.
PyExoCross is a Python adaptation of the ExoCross Fortran application, PyExoCross is designed for postprocessing the huge molecular line lists generated by the ExoMol project and other similar initiatives such as the HITRAN and HITEMP databases. PyExoCross generates absorption and emission stick spectra, cross-sections, and other properties (partition functions, specific heats, cooling functions, lifetimes, and oscillator strengths) based on molecular line lists. PyExoCross calculates cross-sections with four line profiles: Doppler, Gaussian, Lorentzian, and Voigt profiles in both sampling and binned methods; a number of options are available for computing Voigt profiles which we test for speed and accuracy. PyExoCross supports importing and exporting line lists in the ExoMol and HITRAN/HITEMP formats. PyExoCross also provides conversion between the ExoMol and HITRAN data formats. In addition, PyExoCross has extra code for users to automate the batch download of line list files from the ExoMol database.
We present a new analysis of the KELT-24 system, comprising a well-aligned hot Jupiter, KELT-24~b, and a bright ($V=8.3$), nearby ($d=96.9~\mathrm{pc}$) F-type host star. KELT-24~b was independently discovered by two groups in 2019, with each reporting best-fit stellar parameters that were notably inconsistent. Here, we present three independent analyses of the KELT-24 system, each incorporating a broad range of photometric and spectroscopic data, including eight sectors of TESS photometry and more than 200 new radial velocities (RVs) from MINERVA. Two of these analyses use KELT-24's observed spectral energy distribution (SED) through a direct comparison to stellar evolutionary models, while our third analysis assumes an unknown additional body contributing to the observed broadband photometry and excludes the SED. Ultimately, we find that the models that include the SED are a poor fit to the available data, so we adopt the system parameters derived without it. We also highlight a single transit-like event observed by TESS, deemed likely to be an eclipsing binary bound to KELT-24, that will require follow-up observations to confirm. We discuss the potential of these additional bodies in the KELT-24 system as a possible explanation for the discrepancies between the results of the different modeling approaches, and explore the system for longer-period planets that may be weakly evident in the RV observations. The comprehensive investigations that we present not only increase the fidelity of our understanding of the KELT-24 system, but also serve as a blueprint for future stellar modeling in global analyses of exoplanet systems.