Whilst current observational evidence favors a close-to-Gaussian spectrum of primordial perturbations, there exist many models of the early Universe that predict this distribution to have exponentially enhanced or suppressed tails. In this work, we generate realizations of the primordial potential with non-Gaussian tails via a phenomenological model; these are then evolved numerically to obtain maps of the cosmic microwave background (CMB) and large-scale structure (LSS). In the CMB maps, our added non-Gaussianity manifests as a localized enhancement of hot and cold spots, which would be expected to contribute to $N$-point functions up to large $N$. Such models are indirectly constrained by \textit{Planck} trispectrum bounds, which restrict the changes in the temperature fluctuations to $O(10\mu\mathrm{K})$. In the late-time Universe, we find that tailed cosmologies lead to a halo mass function enhanced at high masses, as expected. Furthermore, significant scale-dependent bias in the halo-halo and halo-matter power spectrum is also sourced, which arises from the squeezed limit of large $N$-point functions that are implicitly generated through the enhancement of the tails. These results underscore that a detection of scale-dependent bias alone cannot be used to rule out single field inflation, but can be used together with other statistics to probe a wide range of primordial processes.
This paper presents the design, calibration, and survey strategy of the Fast Radio Burst (FRB) digital backend and its real-time data processing pipeline employed in the Tianlai Cylinder Pathfinder array. The array, consisting of three parallel cylindrical reflectors and equipped with 96 dual-polarization feeds, is a radio interferometer array designed for conducting drift scans of the northern celestial semi-sphere. The FRB digital backend enables the formation of 96 digital beams, effectively covering an area of approximately 40 square degrees with 3 dB beam. Our pipeline demonstrates the capability to make automatic search of FRBs, detecting at quasi-real-time and classify FRB candidates automatically. The current FRB searching pipeline has an overall recall rate of 88\%. During the commissioning phase, we successfully detected signals emitted by four well-known pulsars: PSR B0329+54, B2021+51, B0823+26, and B2020+28. We report the first discovery of an FRB by our array, designated as FRB 20220414A. We also investigate the optimal arrangement for the digitally formed beams to achieve maximum detection rate by numerical simulation.
arXiv:2403.02261 ; code available at this https URL