Tele-correlation refers to the correlation of galaxy shapes with large angular separations (e.g., $>100$ degrees). Since there are no astrophysical reasons causing such a correlation on cosmological scales, any detected tele-correlation could disclose systematic effects in shear-shear correlation measurement. If the shear estimators are measured on single exposures, we show that the field distortion (FD) signal associated with the galaxy position on the CCD can be retained and used in tele-correlation to help us directly calibrate the multiplicative and additive biases in shear-shear correlations. We use the DECaLS shear catalog produced by the Fourier\_Quad pipeline to demonstrate this idea. To our surprise, we find that significant multiplicative biases can arise (up to more than 10\%) due to redshift binning of the galaxies. Correction for this bias leads to about 1$\sigma$ increase of the best-fit value of $S_8$ from $0.760^{+0.015}_{-0.017}$ to $0.777^{+0.016}_{-0.019}$ in our tomography study.
We present the phase-connected timing solutions of all the five pulsars in globular cluster (GC) M3 (NGC 5272), namely PSRs M3A to F (PSRs J1342+2822A to F), with the exception of PSR M3C, from FAST archival data. In these timing solutions, those of PSRs M3E, and F are obtained for the first time. We find that PSRs M3E and F have low mass companions, and are in circular orbits with periods of 7.1 and 3.0 days, respectively. For PSR M3C, we have not detected it in all the 41 observations. We found no X-ray counterparts for these pulsars in archival Chandra images in the band of 0.2-20 keV. We noticed that the pulsars in M3 seem to be native. From the Auto-Correlation Function (ACF) analysis of the M3A's and M3B's dynamic spectra, the scintillation timescale ranges from $7.0\pm0.3$ min to $60.0\pm0.6$ min, and the scintillation bandwidth ranges from $4.6\pm0.2$ MHz to $57.1\pm1.1$ MHz. The measured scintillation bandwidths from the dynamic spectra indicate strong scintillation, and the scattering medium is anisotropic. From the secondary spectra, we captured a scintillation arc only for PSR M3B with a curvature of $649\pm23 {\rm m}^{-1} {\rm mHz}^{-2}$.
The Euclid mission of the European Space Agency will provide weak gravitational lensing and galaxy clustering surveys that can be used to constrain the standard cosmological model and its extensions, with an opportunity to test the properties of dark matter beyond the minimal cold dark matter paradigm. We present forecasts from the combination of these surveys on the parameters describing four interesting and representative non-minimal dark matter models: a mixture of cold and warm dark matter relics; unstable dark matter decaying either into massless or massive relics; and dark matter experiencing feeble interactions with relativistic relics. We model these scenarios at the level of the non-linear matter power spectrum using emulators trained on dedicated N-body simulations. We use a mock Euclid likelihood to fit mock data and infer error bars on dark matter parameters marginalised over other parameters. We find that the Euclid photometric probe (alone or in combination with CMB data from the Planck satellite) will be sensitive to the effect of each of the four dark matter models considered here. The improvement will be particularly spectacular for decaying and interacting dark matter models. With Euclid, the bounds on some dark matter parameters can improve by up to two orders of magnitude compared to current limits. We discuss the dependence of predicted uncertainties on different assumptions: inclusion of photometric galaxy clustering data, minimum angular scale taken into account, modelling of baryonic feedback effects. We conclude that the Euclid mission will be able to measure quantities related to the dark sector of particle physics with unprecedented sensitivity. This will provide important information for model building in high-energy physics. Any hint of a deviation from the minimal cold dark matter paradigm would have profound implications for cosmology and particle physics.
Utilizing a decade-long unTimely dataset, supplemented by multi-band data from archives, we search for young stellar objects (YSOs) with variations larger than one magnitude in W1 band within a region of 110 square degrees in the Galactic plane, covered by VISTA Variables in the Via Lactea (VVV). A total of 641 candidate YSOs have been identified. We classified them into bursts, dips, faders, seculars, and irregulars. Within the burst category, 18 sources were identified as FUor candidates and 1 as an EXor candidate. Irregulars are the most prevalent in the sample. In both bursts and faders, the redder sources tend to show a pattern of bluer when brighter, whereas the bluer sources display the opposite trend, possibly related to the accretion structure of YSOs at different stages. Finally, we obtained the recurrence time scale for FUor eruptions at various stages of YSO evolution. Our findings indicate that younger YSOs generally experience more frequent eruptions compared to older ones.