We present an atmospheric retrieval analysis on a set of young, cloudy, red L-dwarfs -- CWISER J124332.12+600126.2 and WISEP J004701.06+680352.1 -- using the \textit{Brewster} retrieval framework. We also present the first elemental abundance measurements of the young K-dwarf (K0) host star, BD+60 1417 using high resolution~(R = 50,000) spectra taken with PEPSI/LBT. In the complex cloudy L-dwarf regime the emergence of condensate cloud species complicates retrieval analysis when only near-infrared data is available. We find that for both L dwarfs in this work, despite testing three different thermal profile parameterizations we are unable to constrain reliable abundance measurements and thus the C/O ratio. While we can not conclude what the abundances are, we can conclude that the data strongly favor a cloud model over a cloudless model. We note that the difficulty in retrieval constraints persists regardless of the signal to noise of the data examined (S/N $\sim$ 10 for CWISER J124332.12+600126.2 and~40 for WISEP J004701.06+680352.1). The results presented in this work provide valuable lessons about retrieving young, low-surface gravity, cloudy L-dwarfs. This work provides continued evidence of missing information in models and the crucial need for JWST to guide and inform retrieval analysis in this regime.
The molecular-to-atomic gas ratio is crucial to the evolution of the interstellar medium in galaxies. We investigate the balance between the atomic ($\Sigma_{\rm HI}$) and molecular gas ($\Sigma_{\rm H2}$) surface densities in eight nearby star-forming galaxies using new high-quality observations from MeerKAT and ALMA (for HI and CO, respectively). We define the molecular gas ratio as $R_{\rm mol} = \Sigma_{\rm H2} / \Sigma_{\rm HI}$ and measure how it depends on local conditions in the galaxy disks using multi-wavelength observations. We find that, depending on the galaxy, HI is detected at $>3\sigma$ out to 20-120 kpc in galactocentric radius ($r_{\rm gal}$). The typical radius at which $\Sigma_{\rm HI}$ reaches 1~$\rm M_\odot~pc^{-2}$ is $r_{\rm HI}\approx22$~kpc, which corresponds to 1-3 times the optical radius ($r_{25}$). $R_{\rm mol}$ correlates best with the dynamical equilibrium pressure, P$_{\rm DE}$, among potential drivers studied, with a median correlation coefficient of $<\rho>=0.89$. Correlations between $R_{\rm mol}$ and star formation rate, total gas and stellar surface density, metallicity, and $\Sigma_{\rm SFR}$/P$_{\rm DE}$ are present but somewhat weaker. Our results also show a direct correlation between P$_{\rm DE}$ and $\Sigma_{\rm SFR}$, supporting self-regulation models. Quantitatively, we measure similar scalings as previous works and attribute the modest differences that we find to the effect of varying resolution and sensitivity. At $r_{\rm gal} {\gtrsim}0.4~r_{25}$, atomic gas dominates over molecular gas, and at the balance of these two gas phases, we find that the baryon mass is dominated by stars, with $\Sigma_{*} > 5~\Sigma_{\rm gas}$. Our study constitutes an important step in the statistical investigation of how local galaxy properties impact the conversion from atomic to molecular gas in nearby galaxies.
In this paper, we assess the scientific promise and technology feasibility of distributed instruments for planetary science. A distributed instrument is an instrument designed to collect spatially and temporally correlated data from multiple networked, geographically distributed point sensors. Distributed instruments are ubiquitous in Earth science, where they are routinely employed for weather and climate science, seismic studies and resource prospecting, and detection of industrial emissions. However, to date, their adoption in planetary surface science has been minimal. It is natural to ask whether this lack of adoption is driven by low potential to address high-priority questions in planetary science; immature technology; or both. To address this question, we survey high-priority planetary science questions that are uniquely well-suited to distributed instruments. We identify four areas of research where distributed instruments hold promise to unlock answers that are largely inaccessible to monolithic sensors, namely, weather and climate studies of Mars; localization of seismic events on rocky and icy bodies; localization of trace gas emissions, primarily on Mars; and magnetometry studies of internal composition. Next, we survey enabling technologies for distributed sensors and assess their maturity. We identify sensor placement (including descent and landing on planetary surfaces), power, and instrument autonomy as three key areas requiring further investment to enable future distributed instruments. Overall, this work shows that distributed instruments hold great promise for planetary science, and paves the way for follow-on studies of future distributed instruments for Solar System in-situ science.
Upcoming wide field surveys will have many overlapping epochs of the same region of sky. The conventional wisdom is that in order to reduce the errors sufficiently for systematics-limited measurements, like weak lensing, we must do simultaneous fitting of all the epochs. Using current algorithms this will require a significant amount of computing time and effort. In this paper, we revisit the potential of using coadds for shear measurements. We show on a set of image simulations that the multiplicative shear bias can be constrained below the 0.1% level on coadds, which is sufficient for future lensing surveys. We see no significant differences between simultaneous fitting and coadded approaches for two independent shear codes: Metacalibration and BFD. One caveat of our approach is the assumption of a principled coadd, i.e. the PSF is mathematically well-defined for all the input images. This requires us to reject CCD images that do not fully cover the coadd region. We estimate that the number of epochs that must be rejected for a survey like LSST is on the order of 20%, resulting in a small loss in depth of less than 0.1 magnitudes. We also put forward a cell-based coaddition scheme that meets the above requirements for unbiased weak lensing shear estimation in the context of LSST.
We analyse, using new analytical models and numerical general relativistic magnetohydrodynamic simulations, the three-dimensional properties of accretion flows inside the plunging region of black hole spacetimes (i.e., at radii smaller than the innermost stable circular orbit). These simulations are of thick discs, with aspect ratios of order unity $h/r \sim 1$, and with a magnetic field geometry given by the standard low-magnetization "SANE" configuration. This work represents the first step in a wider analysis of this highly relativistic region. We show that analytical expressions derived in the "thin disc" limit describe the numerical results remarkably well, despite the large aspect ratio of the flow. We further demonstrate that accretion within this region is typically mediated via spiral arms, and that the geometric properties of these spiral structures can be understood with a simple analytical model. These results highlight how accretion within the plunging region is fundamentally two dimensional in character, which may have a number of observational implications. We derive a modified theoretical description of the pressure within the plunging region which accounts for turbulent heating and may be of use to black hole image modelling.
Context: There are currently three pulsars firmly detected by imaging atmospheric Cherenkov telescopes (IACTs), two of them reaching TeV energies, challenging models of very-high-energy (VHE) emission in pulsars. More precise observations are needed to better characterize pulsar emission at these energies. The LST-1 is the prototype of the Large-Sized Telescope, that will be part of the Cherenkov Telescope Array Observatory (CTAO). Its improved performance over previous IACTs makes it well suited for studying pulsars. Aims: To study the Crab pulsar emission with the LST-1, improving and complementing the results from other telescopes. These observations can also be used to characterize the potential of the LST-1 to study other pulsars and detect new ones. Methods: We analyzed a total of $\sim$103 hours of gamma-ray observations of the Crab pulsar conducted with the LST-1 in the period from September 2020 to January 2023. The observations were carried out at zenith angles less than 50 degrees. A new analysis of the Fermi-LAT data was also performed, including $\sim$14 years of observations. Results: The Crab pulsar phaseogram, long-term light-curve, and phase-resolved spectra are reconstructed with the LST-1 from 20 GeV to 450 GeV for P1 and up to 700 GeV for P2. The pulsed emission is detected with a significance of 15.2$\sigma$. The two characteristic emission peaks of the Crab pulsar are clearly detected (>10$\sigma$), as well as the so-called bridge emission (5.7$\sigma$). We find that both peaks are well described by power laws, with spectral indices of $\sim$3.44 and $\sim$3.03 respectively. The joint analysis of Fermi-LAT and LST-1 data shows a good agreement between both instruments in the overlapping energy range. The detailed results obtained in the first observations of the Crab pulsar with LST-1 show the potential that CTAO will have to study this type of sources.
The study of extended $\gamma$-ray sources usually assumes symmetric diffusion of cosmic rays. However, recent observations of multiple sources near single pulsars and significant offsets between TeV halo centroids and their parent pulsars suggest that this assumption is overly simplistic. In this Letter, we demonstrate that asymmetric propagation of cosmic rays near their accelerators may create multiple TeV sources instead of a single symmetric source. This mechanism also explains the large offsets between TeV halo centroids and their pulsars. We demonstrate that several perplexing detected sources can be naturally explained without invoking additional invisible accelerators.
this https URL . This version: 13 pages, 3 figures (main paper + methods), plus supplementary material (9 pages, 10 figures)