Recent observations with the James Webb Space Telescope (JWST) have uncovered unexpectedly high cosmic star formation activity in the early Universe, mere hundreds of millions of years after the Big Bang. These observations are often understood to reflect an evolutionary shift in star formation efficiency (SFE) caused by changing galactic conditions during these early epochs. We present FIREbox-HR, a high-resolution, cosmological hydrodynamical simulation from the Feedback in Realistic Environments project, which offers insights into the SFE of galaxies during the first billion years of cosmic time. FIREbox-HR re-simulates the cosmic volume (L = 22.1 cMpc) of the original FIREbox run with eight times higher mass resolution (m_b ~ 7800 M_sun), but with identical physics, down to z ~ 6. FIREbox-HR predicts ultraviolet (UV) luminosity functions in good agreement with available observational data. The simulation also successfully reproduces the observed cosmic UV luminosity density at z ~ 6 - 14, demonstrating that relatively high star formation activity in the early Universe is a natural outcome of the baryonic processes encoded in the FIRE-2 model. According to FIREbox-HR, the SFE - halo mass relation for intermediate mass halos (M_halo ~ 10^9 - 10^11 M_sun) does not significantly evolve with redshift and is only weakly mass-dependent. These properties of the SFE - halo mass relation lead to a larger contribution from lower mass halos at higher z, driving the gradual evolution of the observed cosmic UV luminosity density. A theoretical model based on the SFE - halo mass relation inferred from FIREbox-HR allows us to explore implications for galaxy evolution. Future observations of UV faint galaxies at z > 12 will provide an opportunity to further test these predictions and deepen our understanding of star formation during Cosmic Dawn.
We investigate the asymmetric propagation of 100 TeV electrons (whose radiation mainly concentrates on 20--30 TeV) in turbulent magnetic fields around pulsars, using GPU-accelerated simulations to explore their trajectories and interactions within pulsar wind nebulae and the interstellar medium. Key results include the identification of ``mirage'' sources indicating significant offsets in high-energy emissions from their originating pulsars, challenging the results of traditional symmetric diffusion models. By varying parameters like source distance, magnetic field strength, and electron injection spectral index, the study delineates their effects on observable phenomena such as the probability that a source has at least one mirage around it, as well as the source separation. Our results offer insights into some puzzling sources observed recently by the Large High Altitude Air Shower Observatory (LHAASO), and shed light on the cosmic-ray transport mechanism in the interstellar medium.
The first TeV gamma-ray source with no lower energy counterparts, TeV J2032+4130, was discovered by HEGRA. It appears in the third HAWC catalog as 3HWC J2031+415 and it is a bright TeV gamma-ray source whose emission has previously been resolved as 2 sources: HAWC J2031+415 and HAWC J2030+409. While HAWC J2030+409 has since been associated with the \emph{Fermi-LAT} Cygnus Cocoon, no such association for HAWC J2031+415 has yet been found. In this work, we investigate the spectrum and energy-dependent morphology of HAWC J2031+415. We associate HAWC J2031+415 with the pulsar PSR J2032+4127 and perform a combined multi-wavelength analysis using radio, X-ray, and $\gamma$-ray emission. We conclude that HAWC J2031+415 and, by extension, TeV J2032+4130 are most probably a pulsar wind nebula (PWN) powered by PSR J2032+4127.
A primary objective of exoplanet atmosphere characterisation is to learn about planet formation and evolution, however, this is challenged by degeneracies. To determine whether differences in atmospheric composition can be reliably traced to differences in evolution, we are undertaking a new survey with JWST to compare the compositions of a sample of hot Jupiters that orbit F stars above the Kraft break with different orbital alignments. Under the assumption that aligned planets migrate through the inner disc, while misaligned planets migrate after disc dispersal, the act of migrating through the inner disc should lead to a measurable difference in the C/O between aligned and misaligned planets. We expect the amplitude and sign of this difference to depend on the amount of planetesimal accretion and whether silicates accreted from the inner disc release their oxygen. Here, we identify all known exoplanets that are suitable for testing this hypothesis, describe our JWST survey, and use noise simulations and atmospheric retrievals to estimate our survey's sensitivity. With the selected sample of four aligned and four misaligned hot Jupiters, we will be sensitive to the predicted differences in C/O between aligned and misaligned hot Jupiters for a wide range of model scenarios.
Hot Jupiters present a unique opportunity for measuring how planet formation history shapes present-day atmospheric composition. However, due to the myriad pathways influencing composition, a well-constructed sample of planets is needed to determine whether formation history can be accurately traced back from atmospheric composition. To this end, the BOWIE-ALIGN survey will compare the compositions of 8 hot Jupiters around F stars, 4 with orbits aligned with the stellar rotation axis and 4 misaligned. Using the alignment as an indicator for planets that underwent disc migration or high-eccentricity migration, one can determine whether migration history produces notable differences in composition between the two samples of planets. This paper describes the planet formation model that motivates our observing programme. Our model traces the accretion of chemical components from the gas and dust in the disc over a broad parameter space to create a full, unbiased model sample from which we can estimate the range of final atmospheric compositions. For high metallicity atmospheres (O/H > 10 times solar), the C/O ratios of aligned and misaligned planets diverge, with aligned planets having lower C/O (< 0.25) due to the accretion of oxygen-rich silicates from the inner disc. However, silicates may rain out instead of releasing their oxygen into the atmosphere. This would significantly increase the C/O of aligned planets (C/O > 0.6), inverting the trend between the aligned and misaligned planets. Nevertheless, by comparing statistically significant samples of aligned and misaligned planets, we expect atmospheric composition to constrain how planets form.
this https URL and the documentation can be accessed in this https URL