Cosmological analyses with Type Ia Supernovae (SNe Ia) have traditionally been reliant on spectroscopy for both classifying the type of supernova and obtaining reliable redshifts to measure the distance-redshift relation. While obtaining a host-galaxy spectroscopic redshift for most SNe is feasible for small-area transient surveys, it will be too resource intensive for upcoming large-area surveys such as the Vera Rubin Observatory Legacy Survey of Space and Time, which will observe on the order of millions of SNe. Here we use data from the Dark Energy Survey (DES) to address this problem with photometric redshifts (photo-z) inferred directly from the SN light-curve in combination with Gaussian and full p(z) priors from host-galaxy photo-z estimates. Using the DES 5-year photometrically-classified SN sample, we consider several photo-z algorithms as host-galaxy photo-z priors, including the Self-Organizing Map redshifts (SOMPZ), Bayesian Photometric Redshifts (BPZ), and Directional-Neighbourhood Fitting (DNF) redshift estimates employed in the DES 3x2 point analyses. With detailed catalog-level simulations of the DES 5-year sample, we find that the simulated w can be recovered within $\pm$0.02 when using SN+SOMPZ or DNF prior photo-z, smaller than the average statistical uncertainty for these samples of 0.03. With data, we obtain biases in w consistent with simulations within ~1$\sigma$ for three of the five photo-z variants. We further evaluate how photo-z systematics interplay with photometric classification and find classification introduces a subdominant systematic component. This work lays the foundation for next-generation fully photometric SNe Ia cosmological analyses.
Relativistic jets from a black hole (BH) following the core-collapse of a massive star (''collapsar'') is a leading model for gamma-ray bursts (GRBs). However, the two key ingredients for a Blandford-Znajek (BZ) powered jet $-$ rapid rotation and a strong magnetic field $-$ seem mutually exclusive. Strong fields in the progenitor star's core transport angular momentum outwards more quickly, slowing down the core before collapse. Using MESA stellar evolution models followed to core-collapse, we explicitly show that the small length-scale of the instabilities, likely responsible for angular momentum transport in the core (e.g., Tayler-Spruit), results in a low net magnetic flux fed to the BH horizon, far too small to power GRB jets. Instead, we propose a novel scenario in which collapsar BHs acquire their magnetic ''hair'' from their progenitor proto-neutron star (PNS), which is likely highly magnetized from an internal dynamo. We evaluate the conditions for the BH accretion disk to pin the PNS magnetosphere to its horizon immediately after the collapse. Our results show that the PNS's pre-collapse energy matches the excess energy in Ic-BL supernovae, while the nascent BH's spin and magnetic flux produce jets consistent with observed GRB characteristics. We map our MESA models to 3D general-relativistic magnetohydrodynamic simulations and confirm that accretion disks confine the strong magnetic flux initiated near a rotating BH, enabling the launch of successful GRB jets, whereas a slower spinning BH or one without a disk fails to do so. Our model indicates that standard GRB jets emerge whenever an accretion disk forms.
The mass-metallicity relation (MZR) provides crucial insights into the baryon cycle in galaxies and provides strong constraints on galaxy formation models. We use JWST NIRSpec observations from the UNCOVER program to measure the gas-phase metallicity in a sample of eight galaxies during the epoch of reionization at $z=6-8$. Thanks to strong lensing of the galaxy cluster Abell 2744, we are able to probe extremely low stellar masses between $10^{6}$ and $10^{8} M_{\odot}$. Using strong lines diagnostics and the most recent JWST calibrations, we derive extremely-low oxygen abundances ranging from 12+log(O/H)=6.7 to 7.8. By combining this sample with more massive galaxies at similar redshifts, we derive a best-fit relation of 12+{\rm log(O/H)}=$0.39_{-0.02}^{+0.02} \times$ log(\mstar) $+ 4.52_{-0.17}^{+0.17}$, which is steeper than determinations at $z \sim 3$. Our results show a clear redshift evolution in the overall normalization of the relation, galaxies at higher redshift having significantly lower metallicities at a given mass. A comparison with theoretical models provides important constraints on which physical processes, such as metal mixing, star formation or feedback recipes, are important in reproducing the observations. Additionally, these galaxies exhibit star formation rates that are higher by a factor of a few to tens compared to extrapolated relations at similar redshifts or theoretical predictions of main-sequence galaxies, pointing to a recent burst of star formation. All these observations are indicative of highly stochastic star formation and ISM enrichment, expected in these low-mass systems, suggesting that feedback mechanisms in high-$z$ dwarf galaxies might be different from those in place at higher masses.
Intrinsic colors (ICs) of stars are essential for the studies on both stellar physics and dust reddening. In this work, we developed an XGBoost model to predict the ICs with the atmospheric parameters $T_{\rm eff}$, ${\rm log}\,g$, and $\rm [M/H]$. The model was trained and tested for three colors at Gaia and 2MASS bands with 1,040,446 low-reddening sources. The atmospheric parameters were determined by the Gaia DR3 GSP-phot module and were validated by comparing with APOGEE and LAMOST. We further confirmed that the biases in GSP-phot parameters, especially for $\rm [M/H]$, do not present a significant impact on the IC prediction. The generalization error of the model estimated by the test set is 0.014 mag for $(G_{\rm BP}\,{-}\,G_{\rm RP})_0$, 0.050 mag for $(G_{\rm BP}\,{-}\,K_{\rm S})_0$, and 0.040 mag for $(J\,{-}\,K_{\rm S})_0$. The model was applied to a sample containing 5,714,528 reddened stars with stellar parameters from Andrae et al. (2023) to calculate ICs and reddenings. The high consistency in the comparison of $E(J\,{-}\,K_{\rm S})$ between our results and literature values further validates the accuracy of the XGBoost model. The variation of $E(G_{\rm BP}\,{-}\,K_{\rm S})/E(G_{\rm BP}\,{-}\,G_{\rm RP})$, a representation of the extinction law, with Galactic longitude is found on large scales. This work preliminarily presents the feasibility and the accuracy of the machine-learning approach for IC and dust reddening calculation, whose products could be widely applied to spectro-photometric data. The data sets and trained model can be accessed via \url{this https URL}. The models for more bands will be completed in the following works.
Upcoming cosmological surveys have the potential to reach groundbreaking discoveries on multiple fronts, including the neutrino mass, dark energy, and inflation. Most of the key science goals require the joint analysis of datasets from multiple surveys to break parameter degeneracies and calibrate systematics. To realize such analyses, a large set of mock simulations that realistically model correlated observables is required. In this paper we present the N-body component of the HalfDome cosmological simulations, designed for the joint analysis of Stage-IV cosmological surveys, such as Rubin LSST, Euclid, SPHEREx, Roman, DESI, PFS, Simons Observatory, CMB-S4, and LiteBIRD. Our 300TB initial data release includes full-sky lightcones and halo catalogs between $z$=0--4 for 11 fixed cosmology realizations, as well as an additional run with local primordial non-Gaussianity ($f_{\rm NL}$=20). The simulations evolve $6144^3$ particles in a 3.75$\,h^{-1} {\rm Gpc}$ box, reaching a minimum halo mass of $\sim 6 \times 10^{12}\,h^{-1} M_\odot$ and maximum scale of $k \sim 1\,h{\rm Mpc}^{-1}$. Instructions to access the data, and plans for future data releases, can be found at this https URL.
arXiv:2402.19468v1 , which is not present in the latest version (v2)