Periodograms are widely employed for identifying periodicity in time series data, yet they often struggle to accurately quantify the statistical significance of detected periodic signals when the data complexity precludes reliable simulations. We develop a data-driven approach to address this challenge by introducing a null-signal template (NST). The NST is created by carefully randomizing the period of each cycle in the periodogram template, rendering it non-periodic. It has the same frequentist properties as a periodic signal template regardless of the noise probability distribution, and we show with simulations that the distribution of false positives is the same as with the original periodic template, regardless of the underlying data. Thus, performing a periodicity search with the NST acts as an effective simulation of the null (no-signal) hypothesis, without having to simulate the noise properties of the data. We apply the NST method to the supermassive black hole binaries (SMBHB) search in the Palomar Transient Factory (PTF), where Charisi et al. had previously proposed 33 high signal to (white) noise candidates utilizing simulations to quantify their significance. Our approach reveals that these simulations do not capture the complexity of the real data. There are no statistically significant periodic signal detections above the non-periodic background. To improve the search sensitivity we introduce a Gaussian quadrature based algorithm for the Bayes Factor with correlated noise as a test statistic, in contrast to the standard signal to white noise. We show with simulations that this improves sensitivity to true signals by more than an order of magnitude. However, using the Bayes Factor approach also results in no statistically significant detections in the PTF data.
We report the discovery and characterization of a small planet, TOI-1408 c, on a 2.2-day orbit located interior to a previously known hot Jupiter, TOI-1408 b ($P=4.42$ d, $M=1.86\pm0.02\,M_\mathrm{Jup}$, $R=2.4\pm0.5\,R_\mathrm{Jup}$) that exhibits grazing transits. The two planets are near 2:1 period commensurability, resulting in significant transit timing variations (TTVs) for both planets and transit duration variations (TDVs) for the inner planet. The TTV amplitude for TOI-1408 c is 15% of the planet's orbital period, marking the largest TTV amplitude relative to the orbital period measured to date. Photodynamical modeling of ground-based radial velocity (RV) observations and transit light curves obtained with the Transiting Exoplanet Survey Satellite (TESS) and ground-based facilities leads to an inner planet radius of $2.22\pm0.06\,R_\oplus$ and mass of $7.6\pm0.2\,M_\oplus$ that locates the planet into the Sub-Neptune regime. The proximity to the 2:1 period commensurability leads to the libration of the resonant argument of the inner planet. The RV measurements support the existence of a third body with an orbital period of several thousand days. This discovery places the system among the rare systems featuring a hot Jupiter accompanied by an inner low-mass planet.
Low-frequency quasi-periodic oscillations (LFQPOs) are commonly observed in X-ray light curves of black hole X-ray binaries (BHXRBs); however, their origin remains a topic of debate. In order to thoroughly investigate variations in spectral properties on the QPO timescale, we utilized the Hilbert-Huang transform technique to conduct phase-resolved spectroscopy across a broad energy band for LFQPOs in the newly discovered BHXRB Swift J1727.8-1613. This is achieved through quasi-simultaneous observations from Neutron star Interior Composition ExploreR (NICER), Nuclear Spectroscopic Telescope ARray (NuSTAR), and Hard X-ray Modulation Telescope (Insight-HXMT). Our analysis reveals that both the non-thermal and disk-blackbody components exhibit variations on the QPO timescale, with the former dominating the QPO variability. For the spectral parameters, we observe modulation of the disk temperature, spectral indices, and reflection fraction with the QPO phase with high statistical significance (>5\sigma). Notably, the variation in the disk temperature is found to precede the variations in the non-thermal and disk fluxes by ~0.4-0.5 QPO cycles. We suggest that these findings offer further evidence that the type-C QPO variability is a result of geometric effects of the accretion flow.
We report the discovery of the transiting planet GJ 238 b, with a radius of $0.566\pm0.014$ R$_{\oplus}$ ($1.064\pm0.026$ times the radius of Mars) and an orbital period of 1.74 day. The transit signal was detected by the TESS mission and designated TOI-486.01. The star's position close to the Southern ecliptic pole allows for almost continuous observations by TESS when it is observing the Southern sky. The host star is an M2.5 dwarf with $V=11.57\pm0.02$ mag, $K=7.030\pm0.023$ mag, a distance of $15.2156\pm0.0030$ pc, a mass of $0.4193_{-0.0098}^{+0.0095}$ M$_{\odot}$, a radius of $0.4314_{-0.0071}^{+0.0075}$ R$_{\odot}$, and an effective temperature of $3{,}485\pm140$ K. We validate the planet candidate by ruling out or rendering highly unlikely each of the false positive scenarios, based on archival data and ground-based follow-up observations. Validation was facilitated by the host star's small size and high proper motion, of $892.633\pm0.025$ mas yr$^{-1}$.
Galaxy mergers represent a fundamental physical process under hierarchical structure formation, but their role in triggering AGNs is still unclear. We aim to investigate the merger-AGN connection using state-of-the-art observations and novel methods in detecting mergers and AGNs. We selected stellar mass-limited samples at redshift z<1 from KiDS, focusing on the KiDS-N-W2 field with a wide range of multi-wavelength data. Three AGN types, selected in the MIR, X-ray, and via SED modelling, were analysed. To identify mergers, we used convolutional neural networks trained on two cosmological simulations. We created mass and redshift-matched control samples of non-mergers and non-AGNs. We observe a clear AGN excess (a factor of 2-3) in mergers with respect to non-mergers for the MIR AGNs, and a mild excess for the X-ray and SED AGNs, indicating that mergers could trigger all 3 types but are more connected with the MIR AGNs. About half of the MIR AGNs are in mergers but it is unclear whether mergers are the main trigger. For the X-ray and SED AGNs, mergers are unlikely to be the dominant trigger. We also explore the relation using the continuous AGN fraction $f_{AGN}$ parameter. Mergers exhibit a clear excess of high $f_{AGN}$ values relative to non-mergers, for all AGNs. We unveil the first merger fraction $f_{merg}-f_{AGN}$ relation with two distinct regimes. When the AGN is not dominant, the relation is only mildly increasing or even flat, with the MIR AGNs showing the highest $f_{merg}$. In the regime of very dominant AGNs ($f_{AGN}\geq0.8$), $f_{merg}$ shows a steeply rising trend with increasing $f_{AGN}$ for all AGN types. These trends are also seen when plotted against AGN bolometric luminosity. We conclude that mergers are most connected with dust-obscured AGNs (linked to a fast-growing phase of the SMBH) and are the main or even the sole fuelling mechanism of the most powerful AGNs.
arXiv:2201.02909 by other authors