TOI-6255~b (GJ 4256) is an Earth-sized planet (1.079$\pm0.065$ $R_\oplus$) with an orbital period of only 5.7 hours. With the newly commissioned Keck Planet Finder (KPF) and CARMENES spectrographs, we determined the planet's mass to be 1.44$\pm$0.14 $M_{\oplus}$. The planet is just outside the Roche limit, with $P_{\rm orb}/P_{\rm Roche}$ = 1.13 $\pm0.10$. The strong tidal force likely deforms the planet into a triaxial ellipsoid with a long axis that is $\sim$10\% longer than the short axis. Assuming a reduced stellar tidal quality factor $Q_\star^\prime \approx10^7$, we predict that tidal orbital decay will cause TOI-6255 to reach the Roche limit in roughly 400 Myr. Such tidal disruptions may produce the possible signatures of planet engulfment that have been on stars with anomalously high refractory elemental abundances compared to its conatal binary companion. TOI-6255 b is also a favorable target for searching for star-planet magnetic interactions, which might cause interior melting and hasten orbital decay. TOI-6255 b is a top target (Emission Spectroscopy Metric of about 24) for phase curve observations with the James Webb Space Telescope.
The orbits of close-in exoplanets provide clues to their formation and evolutionary history. Many close-in exoplanets likely formed far out in their protoplanetary disks and migrated to their current orbits, perhaps via high-eccentricity migration (HEM), a process that can also excite obliquities. A handful of known exoplanets are perhaps caught in the act of HEM, as they are observed on highly eccentric orbits with tidal circularization timescales shorter than their ages. One such exoplanet is Kepler-1656 b, which is also the only known non-giant exoplanet (<100 $M_\oplus$) with an extreme eccentricity (e=0.84). We measured the sky-projected obliquity of Kepler-1656 b by observing the Rossiter-McLaughlin effect during a transit with the Keck Planet Finder. Our data are consistent with an aligned orbit, but are also consistent with moderate misalignment with $\lambda < 50$ deg at 95% confidence, with the most likely solution of $35^{+14.9}_{-21.6}$ deg. A low obliquity would be an unlikely outcome of most eccentricity-exciting scenarios, but we show that the properties of the outer companion in the system are consistent with the coplanar HEM mechanism. Alternatively, if the system is not relatively coplanar (<20 deg mutual inclination), Kepler-1656 b may be presently at a rare snapshot of long-lived eccentricity oscillations that do not induce migration. Kepler-1656 b is only the fourth exoplanet with e>0.8 to have its obliquity constrained; expanding this population will help establish the degree to which orbital misalignment accompanies migration. Future work that constrains the mutual inclinations of outer perturbers will be key for distinguishing plausible mechanisms.
We present the first spectroscopic transit results from the newly commissioned Keck Planet Finder on the Keck-I telescope at W. M. Keck Observatory. We observed a transit of KELT-18 b, an inflated ultra-hot Jupiter orbiting a hot star ($T_\text{eff} = 6670$ K) with a binary stellar companion. By modeling the perturbation to the measured cross correlation functions using the Reloaded Rossiter-McLaughlin technique, we derived a sky projected obliquity of $\lambda = -94.8 \pm 0.7$ deg ($\psi = 93.8_{-1.8}^{+1.6}$ deg for isotropic $i_\star$). The data are consistent with an extreme stellar differential rotation ($\alpha = 0.9$), though a more likely explanation is moderate center-to-limb variations of the emergent stellar spectrum. We see additional evidence for the latter from line widths increasing towards the limb. Using loose constraints on the stellar rotation period from observed variability in the available TESS photometry, we were able to constrain the stellar inclination and thus the true 3D stellar obliquity to $\psi = 91.7_{-1.8}^{+2.2}$ deg. KELT-18 b could have obtained its polar orbit through high-eccentricity migration initiated by Kozai-Lidov oscillations induced by the binary stellar companion KELT-18 B, as the two likely have a large mutual inclination as evidenced by Gaia astrometry. KELT-18 b adds another data point to the growing population of close-in polar planets, particularly around hot stars.
Asteroseismology of dwarf stars cooler than the Sun is very challenging due to the low amplitudes and rapid timescales of oscillations. Here, we present the asteroseismic detection of solar-like oscillations at 4-minute timescales ($\nu_{\mathrm{max}}\sim4300\mu$Hz) in the nearby K-dwarf $\sigma$ Draconis using extreme precision Doppler velocity observations from the Keck Planet Finder and 20-second cadence photometry from NASA's Transiting Exoplanet Survey Satellite. The star is the coolest dwarf star to date with both velocity and luminosity observations of solar-like oscillations, having amplitudes of $5.9\pm0.8\,$cm$\,\text{s}^{-1}$ and $0.8\pm0.2$ ppm, respectively. These measured values are in excellent agreement with established luminosity-velocity amplitude relations for oscillations and provide further evidence that mode amplitudes for stars with $T_{\mathrm{eff}}<\,5500\,$K diminish in scale following a $(L/M)^{1.5}$ relation. By modeling the star's oscillation frequencies from photometric data, we measure an asteroseismic age of $4.5\pm0.9\,\rm{(ran)} \pm 1.0\,\rm{(sys)}$ Gyr. The observations demonstrate the capability of next-generation spectrographs and precise space-based photometry to extend observational asteroseismology to nearby cool dwarfs, which are benchmarks for stellar astrophysics and prime targets for directly imaging planets using future space-based telescopes.
We introduce the OATMEAL survey, an effort to measure the obliquities of stars with transiting brown dwarf companions. We observed a transit of the close-in ($P_{\rm orb} = 1.74 \,$ days) brown dwarf GPX-1 b using the Keck Planet Finder (KPF) spectrograph to measure the sky-projected angle between its orbital axis and the spin axis of its early F-type host star ($\lambda$). We measured $\lambda = 6.88 \pm 1.72 ^\circ$ (with additional unquantified systematic uncertainty), suggesting an orbit that is prograde and well aligned with the stellar equator. Hot Jupiters around early F stars are frequently found to have highly misaligned orbits, with polar and retrograde orbits being commonplace. It has been theorized that these misalignments stem from dynamical interactions, such as von Zeipel-Kozai-Lidov cycles, and are retained over long timescales due to weak tidal dissipation in stars with radiative envelopes. By comparing GPX-1 to similar systems under the frameworks of different tidal evolution theories, we argued that the rate of tidal dissipation is too slow to have re-aligned the system. This suggests that GPX-1 may have arrived at its close-in orbit via coplanar high-eccentricity migration or migration through an aligned protoplanetary disk. Our result for GPX-1 is the fifth measurement of the obliquity of a star with a transiting brown dwarf. By enlarging the number of such measurements and comparing them with hot Jupiter systems, we will more clearly discern the differences between the mechanisms that dictate the formation and evolution of both classes of objects.
Post-starburst galaxies (PSBs) are young quiescent galaxies that have recently experienced a rapid decrease in star formation, allowing us to probe the fast-quenching period of galaxy evolution. In this work, we obtained HST WFC3/F110W imaging to measure the sizes of 171 massive ($\mathrm{log(M_{*}/M_{\odot})\sim\,11)}$ spectroscopically identified PSBs at $1<z<1.3$ selected from the DESI Survey Validation Luminous Red Galaxy sample. This statistical sample constitutes an order of magnitude increase from the $\sim20$ PSBs with space-based imaging and deep spectroscopy. We perform structural fitting of the target galaxies with \texttt{pysersic} and compare them to quiescent and star-forming galaxies in the 3D-HST survey. We find that these PSBs are more compact than the general population of quiescent galaxies, lying systematically $\mathrm{\sim\,0.1\,dex}$ below the established size-mass relation. However, their central surface mass densities are similar to those of their quiescent counterparts ($\mathrm{\,log(\Sigma_{1\,kpc}/(M_{\odot}/kpc^2))\sim\,10.1}$). These findings are easily reconciled by later ex-situ growth via minor mergers or a slight progenitor bias. These PSBs are round in projection ($b/a_{median}\sim0.8$), suggesting that they are primarily spheroids, not disks, in 3D. We find no correlation between time since quenching and light-weighted PSB sizes or central densities. This disfavors apparent structural growth due to the fading of centralized starbursts in this galaxy population. Instead, we posit that the fast quenching of massive galaxies at this epoch occurs preferentially in galaxies with pre-existing compact structures.
Pictor A is a $\gamma$-ray emitting radio galaxy and has a bright hotspot called WHS, located $\sim$4 arcmin away from the nucleus. In this letter, we present an analysis of its 16-year Fermi-LAT data and report the first Imaging X-ray Polarimetry Explorer (IXPE) observation for this source. Our analysis of the Fermi-LAT observations reveals evidence of two components in the average $\gamma$-ray spectrum of Pictor A, exhibiting a statistically significant hardening from $\Gamma^1_{\gamma}=3.25\pm0.15$ to $\Gamma^2_{\gamma}=1.81\pm0.07$ at a break energy of $2.46\pm0.09$ GeV. The evident variability of $\gamma$-rays is observed in Pictor A. Interestingly, the variability is dominated by the component below the break energy, and the component above the break energy shows no variability. Furthermore, we find that a power-law function can adequately fit the spectrum during high-flux states, whereas a broken power-law is still required to explain the spectrum during low-flux state. We suggest that the low-energy component originates from the nucleus, while the high-energy component primarily stems from WHS. The broadband spectral energy distributions of both nucleus and WHS can be well represented by a simple leptonic model, with both $\gamma$-ray components attributed to the synchrotron-self-Compton (SSC) process. The analysis of IXPE data on the nucleus yields an upper limit to the polarization degree $\Pi_{\rm X}<$8.9\% in the 2--8 keV band, agreeing with its X-ray emission originating from SSC. However, $\Pi_{\rm X}=23.5\%\pm5.6\%$ is observed at a confidence level of $>99\%$ in the 5--7 keV band, and the possible physical origin of this narrow-energy-band polarization signal is discussed.
On May 27 2024, the Wide-field X-ray Telescope onboard the Einstein Probe (EP) mission detected enhanced X-ray emission from a new transient source in the Small Magellanic Cloud (SMC) during its commissioning phase. Prompt follow-up with the EP Follow-up X-ray Telescope, the Swift X-ray Telescope and Nicer have revealed a very soft, thermally emitting source (kT$\sim$0.1 keV at the outburst peak) with an X-ray luminosity of L$\sim$4$\times$10$^{38}$ erg s$^{-1}$, coincident with CXOU J005245.0-722844. This super-soft outburst faded very quickly in a week time. Several emission lines and absorption edges were present in the X-ray spectrum, such as the Oxygen (0.57 keV) and Neon (0.92 keV) He-like emission lines, and deep Nitrogen (0.67 keV) and Oxygen (0.87 keV) absorption edges. The X-ray emission resembles typical nova outbursts from an accreting white dwarf (WD) in a binary system, despite the X-ray source being historically associated with an O9-B0e massive star exhibiting a 17.55 days periodicity in the optical band. The discovery of this super-soft outburst nails down CXOU J005245.0-722844 as a BeWD X-ray binary: an elusive evolutionary stage where two main-sequence massive stars have undergone a common envelope phase and experienced at least two episodes of mass transfer. In addition, the very short duration of the outburst and the presence of Ne features hint at a rather massive, i.e., close to the Chandrasekhar limit, Ne-O WD in the system.
Characterizing outer companions to hot Jupiters plays a crucial role in deciphering their origins. We present the discovery of a long-period giant planet, HD 118203 c ($m_{c}=11.9^{+0.69}_{-0.63}\ \mathrm{M_{J}}$, $a_{c}=5.36^{+0.09}_{-0.10}$ AU, $e_{c}=0.26^{+0.03}_{-0.02}$) exterior to previously known close-in eccentric hot Jupiter HD 118203 b ($P_{b}=6.135\ \mathrm{days}$, $m_{b}=2.14\pm{0.12}\ \mathrm{M_{J}}$, $r_{b}=1.14\pm{0.029}\ \mathrm{R_{J}}$, $e_{b}=0.31\pm{0.007}$) based on twenty-year radial velocity observations. Using Rossiter-McLaughlin (RM) observations from the Keck Planet Finder (KPF), we measured a low sky-projected obliquity $\lambda_{b}=-11^{\circ}.7^{+7.6}_{-10}$ for HD 118203 b and detected stellar oscillations in the host star, confirming its evolved status. Combining the RM observation with the stellar inclination measurement, we constrained the true obliquity of HD 118203 b as $\Psi_{b}<33^{\circ}.5\ (2\sigma)$, indicating the orbit normal of the hot Jupiter nearly aligned with the stellar spin axis. Furthermore, by combining radial velocities and Hipparcos-Gaia astrometric acceleration, we constrained the line-of-sight mutual inclination between the hot Jupiter and the outer planet to be $9^{\circ}.8^{+16.2}_{-9.3}$ at $2\sigma$ level. HD 118203 is the first hot Jupiter system where both the true obliquity of the hot Jupiter and the mutual inclination between inner and outer planets have been determined. Our results are consistent with a system-wide alignment, with low mutual inclinations between the outer giant planet, the inner hot Jupiter, and the host star. This alignment, along with the moderate eccentricity of HD 118203 c, implies that the system may have undergone coplanar high-eccentricity tidal migration. Under this framework, our dynamical analysis suggests an initial semi-major axis of 0.3 to 3.2 AU for the proto-hot Jupiter.
The degree of alignment between a star's spin axis and the orbital plane of its planets (the stellar obliquity) is related to interesting and poorly understood processes that occur during planet formation and evolution. Hot Jupiters orbiting hot stars ($\gtrsim$6250 K) display a wide range of obliquities, while similar planets orbiting cool stars are preferentially aligned. Tidal dissipation is expected to be more rapid in stars with thick convective envelopes, potentially explaining this trend. Evolved stars provide an opportunity to test the damping hypothesis, particularly stars that were hot on the main sequence and have since cooled and developed deep convective envelopes. We present the first systematic study of the obliquities of hot Jupiters orbiting subgiants that recently developed convective envelopes using Rossiter-McLaughlin observations. Our sample includes two newly discovered systems in the Giants Transiting Giants Survey (TOI-6029 b, TOI-4379 b). We find that the orbits of hot Jupiters orbiting subgiants that have cooled below $\sim$6250 K are aligned or nearly aligned with the spin-axis of their host stars, indicating rapid tidal realignment after the emergence of a stellar convective envelope. We place an upper limit for the timescale of realignment for hot Jupiters orbiting subgiants at $\sim$500 Myr. Comparison with a simplified tidal evolution model shows that obliquity damping needs to be $\sim$4 orders of magnitude more efficient than orbital period decay to damp the obliquity without destroying the planet, which is consistent with recent predictions for tidal dissipation from inertial waves excited by hot Jupiters on misaligned orbits.