We present the phase one report of the Bright Star Subtraction (BSS) pipeline for the Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST). This pipeline is designed to create an extended PSF model by utilizing observed stars, followed by subtracting this model from the bright stars present in LSST data. Running the pipeline on Hyper Suprime-Cam (HSC) data shows a correlation between the shape of the extended PSF model and the position of the detector within the camera's focal plane. Specifically, detectors positioned closer to the focal plane's edge exhibit reduced circular symmetry in the extended PSF model. To mitigate this effect, we present an algorithm that enables users to account for the location dependency of the model. Our analysis also indicates that the choice of normalization annulus is crucial for modeling the extended PSF. Smaller annuli can exclude stars due to overlap with saturated regions, while larger annuli may compromise data quality because of lower signal-to-noise ratios. This makes finding the optimal annulus size a challenging but essential task for the BSS pipeline. Applying the BSS pipeline to HSC exposures allows for the subtraction of, on average, 100 to 700 stars brighter than 12th magnitude measured in g-band across a full exposure, with a full HSC exposure comprising ~100 detectors.
Galactic-wide outflows driven by active galactic nuclei (AGNs) is a routinely invoked feedback mechanism in galaxy evolution models. Hitherto, the interplay among the interstellar gas on galactic scales, the propagation of AGN outflows and the fundamental AGN parameters during evolution remains elusive. Powerful nuclear outflows are found to favorably exist at early AGN stages usually associated with high accretion rates and weak narrow emission lines. In a sample of quasars emitting Mg II narrow absorption lines (NALs) from the Sloan Digital Sky Survey, we discover an unprecedented phenomenon where galaxy-scale inflow-dominated transforming into outflow-dominated gas accompanied by an increasing strength of the narrow [O III] line, at a confidence level of 6.7{\sigma}. The fact that nuclear outflows diminish while galaxy-wide outflows intensifies as AGNs evolve implies that early-stage outflows interact with interstellar medium on galactic scales and trigger the gradual transformation into galaxy-wide outflows, providing observational links to the hypothetical multi-stage propagation of AGN outflows that globally regulates galaxy evolution.
We report the discovery of the most eccentric transiting brown dwarf in the brown dwarf desert, TOI02490b. The brown dwarf desert is the lack of brown dwarfs around main sequence stars within $\sim3$~AU and is thought to be caused by differences in formation mechanisms between a star and planet. To date, only $\sim40$ transiting brown dwarfs have been confirmed. \systemt is a $73.6\pm2.4$ \mjupnospace, $1.00\pm0.02$ \rjup brown dwarf orbiting a $1.004_{-0.022}^{+0.031}$ \msunnospace, $1.105_{-0.012}^{+0.012}$ \rsun sun-like star on a 60.33~d orbit with an eccentricity of $0.77989\pm0.00049$. The discovery was detected within \tess sectors 5 (30 minute cadence) and 32 (2 minute and 20 second cadence). It was then confirmed with 31 radial velocity measurements with \feros by the WINE collaboration and photometric observations with the Next Generation Transit Survey. Stellar modelling of the host star estimates an age of $\sim8$~Gyr, which is supported by estimations from kinematics likely placing the object within the thin disc. However, this is not consistent with model brown dwarf isochrones for the system age suggesting an inflated radius. Only one other transiting brown dwarf with an eccentricity higher than 0.6 is currently known in the brown dwarf desert. Demographic studies of brown dwarfs have suggested such high eccentricity is indicative of stellar formation mechanisms.
Mergers of and interactions between galaxies imprint a wide diversity of morphological, dynamical, and chemical characteristics in stellar halos and tidal streams. Measuring these characteristics elucidates aspects of the progenitors of the galaxies we observe today. The M81 group is the perfect galaxy group to understand the past, present, and future of a group of galaxies in the process of merging. Here we measure the end of star formation (t$_{90}$) and metallicity ([M/H]) of the stellar halo of M82 and the eastern tidal stream of NGC 3077 to: 1) test the idea that M82 possesses a genuine stellar halo, formed before any interaction with M81, 2) determine if NGC 3077's tidal disruption is related to the star formation history in its tails, and 3) create a timeline of the assembly history of the central trio in the M81 group. We argue that M82 possesses a genuine, metal poor ([M/H] ~ -1.62 dex) stellar halo, formed from the merger of a small satellite galaxy roughly 6.6 Gyr ago. We also find that the stars present in NGC 3077's tails formed before tidal disruption with M81, and possesses a roughly uniform metallicity as shown in Okamoto et. al. 2023 implying that NGC 3077's progenitor had significant population gradients. Finally, we present a timeline of the central trio's merger/interaction history.