Minor ions in the solar corona are heated to extreme temperatures, far in excess of those of the electrons and protons that comprise the bulk of the plasma. These highly non-thermal distributions make minor ions sensitive probes of the underlying collisionless heating processes, which are crucial to coronal heating and the creation of the solar wind. The recent discovery of the "helicity barrier" offers a mechanism where imbalanced Alfvénic turbulence in low-beta plasmas preferentially heats protons over electrons, generating high-frequency, proton-cyclotron-resonant fluctuations. We use the hybrid-kinetic particle-in-cell code, Pegasus++, to drive imbalanced Alfvénic turbulence in a 3D low-beta plasma with additional passive ion species, He$^{2+}$ and O$^{5+}$. A helicity barrier naturally develops, followed by clear phase-space signatures of oblique ion-cyclotron-wave heating and Landau-resonant heating from the imbalanced Alfvénic fluctuations. The former results in characteristically arced ion velocity distribution functions, whose non-bi-Maxwellian features are shown by linear ALPS calculations to be critical to the heating process. Additional features include a steep transition-range electromagnetic spectrum, the presence of ion-cyclotron waves propagating in the direction of imbalance, significantly enhanced proton-to-electron heating ratios, anisotropic ion temperatures that are significantly more perpendicular with respect to magnetic field, and extreme heating of heavier species in a manner consistent with empirically derived mass scalings informed by measurements. None of these features are realized in an otherwise equivalent simulation of balanced turbulence. If seen simultaneously in the fast solar wind, these signatures of the helicity barrier would testify to the necessity of incorporating turbulence imbalance in a complete theory for the evolution of the solar wind.
Instabilities driven by pressure anisotropy play a critical role in modulating the energy transfer in space and astrophysical plasmas. For the first time, we simulate the evolution and saturation of the parallel proton firehose instability using a multi-fluid model without adding artificial viscosity. These simulations are performed using a 10-moment, multi-fluid model with local and gradient relaxation heat-flux closures in high-$\beta$ proton-electron plasmas. When these higher-order moments are included and pressure anisotropy is permitted to develop in all species, we find that the electrons have a significant impact on the saturation of the parallel proton firehose instability, modulating the proton pressure anisotropy as the instability saturates. Even for lower $\beta$s more relevant to heliospheric plasmas, we observe a pronounced electron energization in simulations using the gradient relaxation closure. Our results indicate that resolving the electron pressure anisotropy is important to correctly describe the behavior of multi-species plasma systems.
Context. We present multi-wavelength observations of the Galactic SNR HB9 and the H II region G159.2+3.3 apparently projected nearby, in order to study their properties and potential physical connections. Results. HB9 is bright in $\gamma$-rays, but the $\gamma$-ray morphology is centrally filled and most of it is not clearly associated with the surrounding molecular clouds. There is a weak apparent connection of HB9 to the IR bright enclosing shell of G159.2+3.3 in $\gamma$-ray. The diffuse Balmer line has almost identical morphology as the radio emission in G159.2+3.3, indicating they two are thermal in origin. Using medium-band high-resolution optical spectra from selected regions of the southeast (SE) shell of HB9 and G159.2+3.3, we found the radial velocity dispersion of HB9 along the slit is significantly higher than the FWHM of the lines. In contrast, these two values are both smaller and comparable to each other in G159.2+3.3. This indicates that the gas in HB9 may have additional global motion triggered by the SNR shock. The [N II] $\lambda$6583A/H$\alpha$ line ratio of both objects can be interpreted with photo-ionisation by hot stars or low velocity shocks, except for the post-shock region in the SE shell of HB9, where the elevated [N II]/H$\alpha$ line ratio suggests contribution from shock ionisation. The measured electron density from the [S II] 6716/6730 line ratio is significantly lower in the brighter G159.2+3.3 compared to the SE shell of HB9. Conclusions. Our density estimate suggests that G159.2+3.3, although appearing brighter and more compact, is likely located at a much larger distance than HB9, so the two objects have no physical connections, unless the shock compressed gas in HB9 has a significantly lower filling factor.
Thermohaline mixing is one of the main processes in low-mass red giant stars that affect the transport of chemicals and, thus, the surface abundances along the evolution. The interplay of thermohaline mixing with other processes, such as the downward overshooting from the convective envelope, should be carefully investigated. This study aims to understand the combined effects of thermohaline mixing and envelope overshooting. After implementing the thermohaline mixing process in the \textsc{parsec} stellar evolutionary code, we compute tracks and isochrones (with \textsc{trilegal} code) and compare them with observational data. To constrain the efficiencies of both processes, we perform a detailed modelling that is suitable for globular clusters NGC 6397 and M4. Our results indicate that an envelope overshooting efficiency parameter, $\Lambda_\mathrm{e}=0.6$, and a thermohaline efficiency parameter, $\alpha_\mathrm{th}=50$, are necessary to reproduce the RGB bump magnitudes and lithium abundances observed in these clusters. We find that both envelope overshooting and thermohaline mixing have a significant impact on the variation of $^7$Li abundances. Additionally, we also explore the effects of adopting solar-scaled or $\alpha$-enhanced mixtures on our models. The $^{12}$C and the $^{12}$C/$^{13}$C ratio are also effective indicators to probe extra mixing in RGB stars. Although, their usefulness is currently limited by the lack of precise and accurate C-isotopes abundances.
Over the past ten years, several breakthroughs have been made in multi-messenger astronomy. Thanks to the IceCube Neutrino Observatory, the detection of astrophysical neutrinos was proved to be practical. However, no source has been significantly identified due to the lack of statistics and uncovered field of view. The next generation of high-energy neutrino telescope is in high demand. We propose the NEutrino Observatory in the Nanhai (NEON), located in the South China Sea to be complementary for the global neutrino detectors. This proposal describes the design and layout of the array and reports on comprehensive simulations conducted to assess its performance. The NEON project, with a volume of 10 km$^3$, achieves an angular resolution of 0.1$^\circ$ at 100 TeV. With 10 years of operation, the project's 5$\sigma$ sensitivity is estimated as $E^2\Phi \sim 2 \times 10^{-10}$ GeV cm$^{-2}$ s$^{-1}$ for a source spectrum index of -2. We found that the variation in depth from 1700 to 3500 meters does not significantly influence the sensitivity to steady sources.