We report the first observation of the nearby giant radio galaxy NGC 315 using a global VLBI array consisting of 22 radio antennas located across five continents, including high-sensitivity stations, at 22 GHz. Utilizing the extensive $(u,v)$-coverage provided by the array, coupled with the application of a recently developed super-resolution imaging technique based on the regularized maximum likelihood method, we were able to transversely resolve the NGC 315 jet at parsec scales for the first time. Previously known for its central ridge-brightened morphology at similar scales in former VLBI studies, the jet now clearly exhibits a limb-brightened structure. This finding suggests an inherent limb-brightening that was not observable before due to limited angular resolution. Considering that the jet is viewed at an angle of $\sim50^\circ$, the observed limb-brightening is challenging to reconcile with the magnetohydrodynamic models and simulations, which predict that the Doppler-boosted jet edges should dominate over the non-boosted central layer. The conventional jet model that proposes a fast spine and a slow sheath with uniform transverse emissivity may pertain to our observations. However, in this model, the relativistic spine would need to travel at speeds of $\Gamma\gtrsim6.0-12.9$ along the de-projected jet distance of (2.3-10.8) $\times 10^3$ gravitational radii from the black hole. We propose an alternative scenario that suggests higher emissivity at the jet boundary layer, resulting from more efficient particle acceleration or mass loading onto the jet edges, and consider prospects for future observations with even higher angular resolution.
Through a detailed timing analysis of $\textit{Fermi}$-LAT data, the rotational behavior of the $\gamma$-ray pulsar PSR J1522$-$5735 was tracked from August 2008 (MJD 54692) to January 2024 (MJD 60320). During this 15.4-year period, two over-recovery glitches and four anti-glitches were identified, marking a rare occurrence in rotation-powered pulsars (RPPs). The magnitudes of these (net) spin-down glitches were determined to be $|\Delta\nu_{\rm g}/\nu| \sim 10^{-8}$, well above the estimated detectability limit. For the two over-recovery glitches, the respective recovery fractions $Q$ are $2.1(7)$ and $1.4(2)$. Further analysis showed no substantial variations in either the flux or pulse profile shape in any of these events, suggesting that small (net) spin-down glitches, unlike large events observed in magnetars and magnetar-like RPPs, may occur without leaving an impact on the magnetosphere. Within the framework of the vortex creep and vortex bending models, anti-glitches and over-recoveries indicate the recoupling of vortex lines that moved inward as a result of a crustquake; meanwhile, the apparent fluctuations in the spin-down rate after the glitches occur as a result of the coupling of the oscillations of bent vortex lines to the magnetosphere.
Detecting primordial fluctuations from the cosmic dark ages requires extremely large low-frequency radio telescope arrays deployed on the far side of the Moon. The antenna of such an array must be lightweight, easily storable and transportable, deployable on a large scale, durable, and capable of good electrical performance. A membrane antenna is an excellent candidate to meet these criteria. We study the design of a low-frequency membrane antenna for a lunar-based low-frequency (<30 MHz) radio telescope constructed from polyimide film widely used in aerospace applications, owing to its excellent dielectric properties and high stability as a substrate material. We first design and optimize an antenna in free space through dipole deformation and coupling principles, then simulate an antenna on the lunar surface with a simple lunar soil model, yielding an efficiency greater than 90% in the range of 12-19 MHz and greater than 10% in the range of 5-35 MHz. The antenna inherits the omni-directional radiation pattern of a simple dipole antenna in the 5-30 MHz frequency band, giving a large field of view and allowing detection of the 21 cm global signal when used alone. A demonstration prototype is constructed, and its measured electrical property is found to be consistent with simulated results using |S11| measurements. This membrane antenna can potentially fulfill the requirements of a lunar low-frequency array, establishing a solid technical foundation for future large-scale arrays for exploring the cosmic dark ages.
We present the discovery of a Jupiter-like planet, HD 73344 d ($m_{d}=2.55^{+0.56}_{-0.46}\ \mathrm{M_{J}}$, $a_{d}=6.70^{+0.25}_{-0.26}$ AU, $e_{d}=0.18^{+0.14}_{-0.12}$) based on 27-year radial velocity observations. HD 73344 also hosts a compact inner planetary system, including a transiting sub-Neptune HD 73344 b ($P_{b}=15.61\ \mathrm{days}$, $r_{b}=2.88^{+0.08}_{-0.07}\ \mathrm{R_{\oplus}}$) and a non-transiting Saturn-mass planet ($P_{c}=65.936\ \mathrm{days}$, $m_{c}\sin{i_c}=0.36^{+0.02}_{-0.02}\ \mathrm{M_{J}}$). By analyzing TESS light curves, we identified a stellar rotation period of $9.03\pm{1.3}$ days. Combining this with $v\sin{i_*}$ measurements from stellar spectra, we derived a stellar inclination of $63.6^{+17.4}_{-16.5}\ \rm{deg} $. Furthermore, by combining radial velocities and Hipparcos-Gaia astrometric acceleration, we characterized the three-dimensional orbit of the outer giant planet and constrained its mutual inclination relative to the innermost transiting planet to be $46 <\Delta I_{bd}< 134\ \rm{deg}\ (1\sigma)$ and $20 <\Delta I_{bd}< 160\ \rm{deg}\ (2\sigma)$, strongly disfavoring coplanar architectures. Our analytical calculations and N-body simulation reveal that the two inner planets are strongly coupled with each other and undergo nodal precession together around the orbital axis of the giant planet. During nodal precession, the orbital inclination of inner planets oscillate with time and therefore become misaligned relative to the stellar spin axis. The formation of such systems suggests a history of planet-planet scattering or misalignment between the inner and outer components of protoplanetary disks. The upcoming release of Gaia DR4 will uncover more systems similar to HD 73344 and enable the study of the flatness of exoplanet systems with a mixture of inner and outer planetary systems on a statistical level.
Measurements of the obliquities in exoplanet systems have revealed some remarkable architectures, some of which are very different from the Solar System. Nearly 200 obliquity measurements have been obtained through observations of the Rossiter-McLaughlin (RM) effect. Here we report on observations of 19 planetary systems that led to 17 clear detections of the RM effect and 2 less secure detections. After adding the new measurements to the tally, we use the entire collection of RM measurements to investigate four issues that have arisen in the literature. i) Does the obliquity distribution show a peak at approximately 90$^\circ$? We find tentative evidence that such a peak does exist when restricting attention to the sample of sub-Saturn planets and hot Jupiters orbiting F stars. ii) Are high obliquities associated with high eccentricities? We find the association to be weaker than previously reported, and that a stronger association exists between obliquity and orbital separation, possibly due to tidal obliquity damping at small separations. iii) How low are the lowest known obliquities? Among hot Jupiters around cool stars, we find the dispersion to be $1.4\pm0.7^\circ$, smaller than the 6$^\circ$ obliquity of the Sun, which serves as additional evidence for tidal damping. iv) What are the obliquities of stars with compact and flat systems of multiple planets? We find that they generally have obliquities lower than $10^\circ$, with several remarkable exceptions possibly caused by wide-orbiting stellar or planetary companions.
The stellar obliquity distribution of warm-Jupiter systems is crucial for constraining the dynamical history of Jovian exoplanets, as the warm Jupiters' tidal detachment likely preserves their primordial obliquity. However, the sample size of warm-Jupiter systems with measured stellar obliquities has historically been limited compared to that of hot Jupiters, particularly in hot-star systems. In this work, we present newly obtained sky-projected stellar obliquity measurements for warm-Jupiter systems, TOI-559, TOI-2025, TOI-2031, TOI-2485, TOI-2524, and TOI-3972, derived from the Rossiter-McLaughlin effect, and show that all six systems display alignment with a median measurement uncertainty of 13 degrees. Combining these new measurements with the set of previously reported stellar obliquity measurements, our analysis reveals that single-star warm-Jupiter systems tend to be aligned, even around hot stellar hosts. This alignment exhibits a 3.4-$\sigma$ deviation from the $T_{\rm eff}-\lambda$ dependency observed in hot-Jupiter systems, where planets around cool stars tend to be aligned, while those orbiting hot stars show considerable misalignment. The current distribution of spin-orbit measurements for Jovian exoplanets indicates that misalignments are neither universal nor primordial phenomena affecting all types of planets. The absence of misalignments in single-star warm-Jupiter systems further implies that many hot Jupiters, by contrast, have experienced a dynamically violent history.