We present the first joint-likelihood analysis of Big Bang Nucleosynthesis (BBN) and Cosmic Microwave Background (CMB) data. Bayesian inference is performed on the baryon abundance and the effective number of neutrino species, $N_{\rm eff}$, using a CMB Boltzmann solver in combination with LINX, a new flexible and efficient BBN code. We marginalize over Planck nuisance parameters and nuclear rates to find $N_{\rm{eff}} = 3.08_{-0.13}^{+0.13},\,2.94 _{-0.16}^{+0.16},$ or $2.98_{-0.13}^{+0.14}$, for three separate reaction networks. This framework enables robust testing of the Lambda Cold Dark Matter paradigm and its variants with CMB and BBN data.
We introduce LINX (Light Isotope Nucleosynthesis with JAX), a new differentiable public Big Bang Nucleosynthesis (BBN) code designed for fast parameter estimation. By leveraging JAX, LINX achieves both speed and differentiability, enabling the use of Bayesian inference, including gradient-based methods. We discuss the formalism used in LINX for rapid primordial elemental abundance predictions and give examples of how LINX can be used. When combined with differentiable Cosmic Microwave Background (CMB) power spectrum emulators, LINX can be used for joint CMB and BBN analyses without requiring extensive computational resources, including on personal hardware.
Cosmic rays (CRs) have strong influences on the chemistry of dense molecular clouds (MCs). To study the detailed chemistry induced by CRs, we conducted a Yebes W band line survey towards an unshocked MC (which we named as 3C391:NML) associated with supernova remnant (SNR) 3C391. We detected emission lines of 18 molecular species in total and estimated their column densities with local thermodynamic equilibrium (LTE) and non-LTE analysis. Using the abundance ratio N(HCO+)/N(CO) and an upper limit of N(DCO+)/N(HCO+), we estimated the CR ionization rate of 3C391:NML is $\zeta\gtrsim 2.7\times 10^{-14}\rm \ s^{-1}$ with an analytic method. However, we caution on adopting this value because chemical equilibrium, which is a prerequisite of using the equations, is not necessarily reached in 3C391:NML. We observed lower N(HCO+)/N(HOC+), higher N(HCS+)/N(CS), and higher X($l$-C3H+) by an order of magnitude in 3C391:NML than the typical values in quiescent dense MCs. We found that an enhanced CR ionization rate (of order $\sim 10^{-15}$ or $\sim 10^{-14}\rm \ s^{-1}$) is needed to reproduce the observation with chemical model. This is higher than the values found in typical MCs by 2--3 orders of magnitude.
this https URL . Submitted to A&A