We present the first suite of cosmological hydrodynamical zoom-in simulations of isolated dwarf galaxies for a dark sector that consists of Cold Dark Matter and a strongly-dissipative sub-component. The simulations are implemented in GIZMO and include standard baryons following the FIRE-2 galaxy formation physics model. The dissipative dark matter is modeled as Atomic Dark Matter (aDM), which forms a dark hydrogen gas that cools in direct analogy to the Standard Model. Our suite includes seven different simulations of $\sim 10^{10} M_{\odot}$ systems that vary over the aDM microphysics and the dwarf's evolutionary history. We identify a region of aDM parameter space where the cooling rate is aggressive and the resulting halo density profile is universal. In this regime, the aDM gas cools rapidly at high redshifts and only a small fraction survives in the form of a central dark gas disk; the majority collapses centrally into collisionless dark "clumps", which are clusters of sub-resolution dark compact objects. These dark clumps rapidly equilibrate in the inner galaxy, resulting in an approximately isothermal distribution that can be modeled with a simple fitting function. Even when only a small fraction ($\sim 5\%$) of the total dark matter is strongly dissipative, the central densities of classical dwarf galaxies can be enhanced by over an order of magnitude, providing a sharp prediction for observations.
Arkenstone is a new scheme that allows multiphase, stellar feedback-driven winds to be included in coarse resolution cosmological simulations. The evolution of galactic winds and their subsequent impact on the circumgalactic medium are altered by exchanges of mass, energy, momentum, and metals between their component phases. These exchanges are governed by complex, small-scale physical processes that cannot be resolved in cosmological simulations. In this second presentation paper, we describe Arkenstone's novel cloud particle approach for modelling unresolvable cool clouds entrained in hot, fast winds. This general framework allows models of the cloud-wind interaction, derived from state-of-the-art high-resolution simulations, to be applied in a large-scale context. In this work, we adopt a cloud evolution model that captures simultaneous cloud mass loss to and gain from the ambient hot phase via turbulent mixing and radiative cooling, respectively. We demonstrate the scheme using non-cosmological idealized simulations of a galaxy with a realistic circumgalactic medium component, using the Arepo code. We show that the ability of a high-specific energy wind component to perform preventative feedback may be limited by heavy loading of cool clouds coupled into it. We demonstrate that the diverging evolution of clouds of initially differing masses leads to a complex velocity field for the cool phase and a cloud mass function that varies both spatially and temporally in a non-trivial manner. These latter two phenomena can manifest in the simulation because of our choice of a Lagrangian discretisation of the cloud population, in contrast to other proposed schemes. This is a Learning the Universe publication.
We present JWST/MIRI observations of the Type I superluminous supernova (SLSN) 2017gci taken over 2000 rest-frame days after the supernova (SN) exploded, which represent the latest phase images taken of any known SLSN. We find that archival \WISE detections of SN\,2017gci taken 70 to 200 days after explosion are most likely explained by an IR dust echo from a $\sim 3 \times 10^{-4}$ M$_\odot$ shell of pre-existing dust, as opposed to freshly-formed dust. New JWST observations reveal IR emission in the field of SN\,2017gci, which we determine is most likely dominated by the host galaxy of the SN, based on the expected flux of the galaxy and the measurable separation between said emission and the location of the SN. Based on models for IR emission of carbonate dust, we place a $3\sigma$ upper limit of $0.83$ M$_\odot$ of dust formed in SN\,2017gci, with a lowest $1\sigma$ limit of $0.44$ M$_\odot$. Infrared (IR) detections of other SLSNe have suggested that SLSNe could be among the most efficient dust producers in the universe. Our results suggest that SLSNe do not necessarily form more dust than other types of SNe, but instead might have a more accelerated dust formation process. More IR observations of a larger sample of SLSNe will be required to determine how efficient dust production is in SLSNe.
We investigate the origin of very long-periodic pulsations (VLPs) in the white-light emission of an X6.4 flare on 2024 February 22 (SOL2024-02-22T22:08), which occurred at the edge of a sunspot group. The flare white-light fluxes reveal four successive and repetitive pulsations, which are simultaneously measured by the Helioseismic and Magnetic Imager and the White-light Solar Telescope. A quasi-period of 8.6$^{+1.5}_{-1.9}$ minutes, determined by the Morlet wavelet transform, is detected in the visible continuum channel. The modulation depth, which is defined as the ratio between the oscillatory amplitude and its long-term trend, is smaller than 0.1%, implying that the QPP feature is a weak wave process. Imaging observations show that the X6.4 flare occurs near a sunspot group. Moreover, the white-light brightening is located in sunspot penumbra, and a similar quasi-period of about 8.5$^{+1.6}_{-1.8}$ minutes is identified in one penumbral location of the nearest sunspot. The map of Fourier power distribution suggests that a similar periodicity is universally existing in most parts of the penumbra that is close to the penumbral-photospheric boundary. Our observations support the scenario of that the white-light QPP is probably modulated by the slow-mode magnetoacoustic gravity wave leaking from the sunspot penumbra.
arXiv:2403.08877 . Minor changes in the arXiv abstract to fit character limit