We investigate the spatial offsets between dust and ultraviolet (UV) emission in high-redshift galaxies using the Cosmic Dawn III (CoDa III) simulation, a state-of-the-art fully coupled radiation-hydrodynamics cosmological simulation. Recent observations have revealed puzzling spatial disparities between ALMA dust continuum and UV emission as seen by HST and JWST in galaxies at z=5-7, compelling us to propose a physical interpretation of such offsets. Our simulation, which incorporates a dynamical dust model, naturally reproduces these offsets in massive, UV-bright galaxies (log$_{10}$(M$_{\rm{DM}}$/M$_{\odot}$)>11.5, M$_{\rm{AB1500}}$<-20). We find that dust-UV offsets increase with halo mass and UV brightness, reaching up to $\sim 2$ pkpc for the most massive systems, in good agreement with observational data from the ALPINE and REBELS surveys. Our analysis reveals that these offsets primarily result from severe dust extinction in galactic centers rather than a misalignment between dust and stellar mass distributions. The dust remains well-aligned with the bulk stellar component, and we predict the dust continuum should therefore align well with the stellar rest-frame NIR component, less affected by dust attenuation. This study provides crucial insights into the complex interplay between star formation, dust distribution, and observed galaxy morphologies during the epoch of reionization, highlighting the importance of dust in shaping the appearance of early galaxies at UV wavelengths.
We present the Red Unknowns: Bright Infrared Extragalactic Survey (RUBIES), providing JWST/NIRSpec spectroscopy of red sources selected across ~150 arcmin$^2$ from public JWST/NIRCam imaging in the UDS and EGS fields. RUBIES novel observing strategy offers a well-quantified selection function: the survey is optimised to reach high (>70%) completeness for bright and red (F150W-F444W>2) sources that are very rare. To place these rare sources in context, we simultaneously observe a reference sample of the 2<z<7 galaxy population, sampling sources at a rate that is inversely proportional to their number density in the 3D space of F444W magnitude, F150W-F444W colour, and photometric redshift. In total, RUBIES observes ~3000 targets across $1<z_{phot}<10$ with both the PRISM and G395M dispersers, and ~1500 targets at $z_{phot}>3$ using only the G395M disperser. The RUBIES data reveal a highly diverse population of red sources that span a broad redshift range ($z_{spec}\sim1-9$), with photometric redshift scatter and outlier fraction that are 3 times higher than for similarly bright sources that are less red. This diversity is not apparent from the photometric SEDs. Only spectroscopy reveals that the SEDs encompass a mixture of galaxies with dust-obscured star formation, extreme line emission, a lack of star formation indicating early quenching, and luminous active galactic nuclei. As a first demonstration of our broader selection function we compare the stellar masses and rest-frame U-V colours of the red sources and our reference sample: red sources are typically more massive ($M_*\sim10^{10-11.5} M_\odot$) across all redshifts. However, we find that the most massive systems span a wide range in U-V colour. We describe our data reduction procedure and data quality, and publicly release the reduced RUBIES data and vetted spectroscopic redshifts of the first half of the survey through the DJA.
With numerical simulations that employ adaptive ray-tracing (ART) for radiative transfer at the same time as evolving gas magnetohydrodynamics, thermodynamics, and photochemistry, it is possible to obtain a high resolution view of ultraviolet (UV) fields and their effects in realistic models of the multiphase interstellar medium. Here, we analyze results from TIGRESS-NCR simulations, which follow both far-UV (FUV) wavelengths, important for photoelectric heating and PAH excitation, and the Lyman continuum (LyC), which photoionizes hydrogen. Considering two models, representing solar neighborhood and inner galaxy conditions, we characterize the spatial distribution and time variation of UV radiation fields, and quantify their correlations with gas. We compare four approximate models for the FUV to simulated values to evaluate alternatives when full ART is infeasible. By convolving FUV radiation with density, we produce mock maps of dust emission. We introduce a method to calibrate mid-IR observations, for example from JWST, to obtain high resolution gas surface density maps. We then consider the LyC radiation field, finding most of the gas exposed to this radiation to be in ionization-recombination equilibrium and to have a low neutral fraction. Additionally, we characterize the ionization parameter as a function of environment. Using a simplified model of the LyC radiation field, we produce synthetic maps of emission measure (EM). We show that the simplified model can be used to extract an estimate of the neutral fraction of the photoionized gas and mean free path of ionizing radiation from observed EM maps in galaxies.
We present \textsc{Mathpop}, a novel method to infer the globular cluster (GC) counts in ultra-diffuse galaxies (UDGs) and low-surface brightness galaxies (LSBGs). Many known UDGs have a surprisingly high ratio of GC number to surface brightness. However, standard methods to infer GC counts in UDGs face various challenges, such as photometric measurement uncertainties, GC membership uncertainties, and assumptions about the GC luminosity functions (GCLFs). \textsc{Mathpop} tackles these challenges using the mark-dependent thinned point process, enabling joint inference of the spatial and magnitude distributions of GCs. In doing so, \textsc{Mathpop} allows us to infer and quantify the uncertainties in both GC counts and GCLFs with minimal assumptions. As a precursor to \textsc{Mathpop}, we also address the data uncertainties coming from the selection process of GC candidates: we obtain probabilistic GC candidates instead of the traditional binary classification based on the color--magnitude diagram. We apply \textsc{Mathpop} to 40 LSBGs in the Perseus cluster using GC catalogs from a \textit{Hubble Space Telescope} imaging program. We then compare our results to those from an independent study using the standard method. We further calibrate and validate our approach through extensive simulations. Our approach reveals two LSBGs having GCLF turnover points much brighter than the canonical value with Bayes' factor being $\sim4.5$ and $\sim2.5$, respectively. An additional crude maximum-likelihood estimation shows that their GCLF TO points are approximately $0.9$~mag and $1.1$~mag brighter than the canonical value, with $p$-value $\sim 10^{-8}$ and $\sim 10^{-5}$, respectively.
Super-puffs are low-density planets of unknown origin and composition. If they form by accreting nebular gas through a circumplanetary disk, one might expect super-puffs to be spinning quickly. Here, we derive upper limits on the rotational oblateness of the super-puff Kepler-51d, based on precise transit observations with the NIRSpec instrument aboard the James Webb Space Telescope. The absence of detectable oblateness-related anomalies in the light curve leads to an upper limit of about $0.15$ on the planet's sky-projected oblateness. Assuming the sky-projected oblateness to be representative of the true oblateness, the rotation period of Kepler-51d is $\gtrsim 40$ hours, or equivalently, its rotation speed is $\lesssim 42\%$ of the breakup speed. Alternatively, if the apparently low density of Kepler-51d is due to an opaque planetary ring, the ring must be oriented within $27°$ of face-on and have an inner radius smaller than $1.2$ times the planet's radius. The lack of anomalies exceeding $0.01\%$ in the ingress and egress portions of the light curve also places a constraint on the model of Wang & Dai, in which the planet's apparently low density is due to a dusty outflowing atmosphere.