Abstract visibility
Abstract text size

Papers for Monday, Sep 16 2024

Papers with local authors

Rodrigo Córdova Rosado, Andy D. Goulding, Jenny E. Greene, Grayson C. Petter, Ryan C. Hickox, Nickolas Kokron, Michael A. Strauss, Jahmour J. Givans, Yoshiki Toba, Cassandra Starr Henderson
0 votes
Paper 3 — arXiv:2409.08314
0 votes
Paper 3 — arXiv:2409.08314

Active galactic nuclei (AGN) are the signposts of black hole growth, and likely play an important role in galaxy evolution. An outstanding question is whether AGN of different spectral types indicate different evolutionary stages in the coevolution of black holes and galaxies. We present the angular correlation function between an AGN sample selected from the Hyper Suprime Camera Subaru Strategic Program (HSC-SSP) optical + Wide-field Infrared Survey Explorer (WISE) mid-IR photometry, and a luminous red galaxy (LRG) sample from HSC-SSP. We investigate AGN clustering strength as a function of their luminosity and spectral features across three independent HSC fields totaling $\sim600\,{\rm deg^{2}}$, for $z\in0.6-1.2$ and AGN with $L_{6\mu m}>3\times10^{44}{\rm\,erg\,s^{-1}}$. There are $\sim28,500$ AGN and $\sim1.5$ million LRGs in our primary analysis. We determine the inferred average halo mass for the full AGN sample ($M_h \approx 10^{12.9}h^{-1}M_\odot$), and note that it does not evolve significantly as a function of redshift (over this narrow range) or luminosity. We find that, on average, unobscured AGN ($M_h \approx10^{13.3}h^{-1}M_\odot$) occupy $\sim4.5\times$ more massive halos than obscured AGN ($M_h \approx10^{12.6}h^{-1}M_\odot$), at $5\sigma$ statistical significance using 1-D uncertainties, and at $3\sigma$ using the full covariance matrix, suggesting a physical difference between unobscured and obscured AGN, beyond the line-of-sight viewing angle. Furthermore, we find evidence for a halo mass dependence on reddening level within the Type I AGN population, which could support the existence of a previously claimed dust-obscured phase in AGN-host galaxy coevolution. However, we also find that even quite small systematic shifts in the redshift distributions of the AGN sample could plausibly explain current and previously observed differences in $M_{h}$.

Joseph Farah, Peter Galison, Kazunori Akiyama, Katherine L. Bouman, Geoffrey C. Bower, Andrew Chael, Antonio Fuentes, José L. Gómez, Mareki Honma, Michael D. Johnson, Yutaro Kofuji, Daniel P. Marrone, Kotaro Moriyama, Ramesh Narayan, Dominic W. Pesce, Paul Tiede, Maciek Wielgus, Guang-Yao Zhao, The Event Horizon Telescope Collaboration
0 votes
Paper 6 — arXiv:2409.08321
0 votes
Paper 6 — arXiv:2409.08321

Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT's $(u, v)$-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set.

Emily K. Biermann, Yaqiong Li, Sigurd Naess, Steve K. Choi, Susan E. Clark, Mark Devlin, Jo Dunkley, P. A. Gallardo, Yilun Guan, Allen Foster, Matthew Hasselfield, Carlos Hervías-Caimapo, Matt Hilton, Adam D. Hincks, Anna Y.Q. Ho, John C. Hood II, Kevin M. Huffenberger, Arthur Kosowsky, Michael D. Niemack, John Orlowski-Scherer, Lyman Page, Bruce Partridge, Maria Salatino, Cristóbal Sifón, Suzanne T. Staggs, Cristian Vargas, Edward J. Wollack
0 votes
Paper 15 — arXiv:2409.08429
0 votes
Paper 15 — arXiv:2409.08429

We conduct a systematic search for astrophysical transients using data from the Atacama Cosmology Telescope (ACT). The data were taken from 2017 to 2022 in three frequency bands spanning 77 GHz to 277 GHz. In this paper we present a pipeline for transient detection using single observation maps where each pixel of a map contains one observation with an integration time of approximately four minutes. We find 34 transient events at 27 unique locations. All but two of the transients are associated with Galactic stars and exhibit a wide range of properties. We also detect an event coincident with the classical nova, YZ Ret and one event consistent with a flaring active galactic nucleus. We notably do not detect any reverse shock emission from gamma ray bursts, a non-detection which is in tension with current models.

Cosmic ray (CR) feedback plays a vital role in shaping the formation and evolution of galaxies through their interaction with magnetohydrodynamic waves. In the CR self-confinement scenario, the waves are generated by the CR gyro-resonant instabilities via CR streaming or CR pressure anisotropy, and saturate by balancing wave damping. The resulting effective particle scattering rate by the waves, {\nu}eff, critically sets the coupling between the CRs and background gas, but the efficiency of CR feedback is yet poorly constrained. We employ 1D kinetic simulations under the Magnetohydrodynamic-Particle-In-Cell (MHD-PIC) framework with the adaptive {\delta}f method to quantify {\nu}eff for the saturated state of the CR pressure anisotropy instability (CRPAI) with ion-neutral friction. We drive CR pressure anisotropy by expanding/compressing box, mimicking background evolution of magnetic field strength, and the CR pressure anisotropy eventually reaches a quasi-steady state by balancing quasi-linear diffusion. At the saturated state, we measure {\nu}eff and the CR pressure anisotropy level, establishing a calibrated scaling relation with environmental parameters. The scaling relation is consistent with quasi-linear theory and can be incorporated to CR fluid models, in either the single-fluid or p-by-p treatments. Our results serve as a basis towards accurately calibrating the subgrid physics in macroscopic studies of CR feedback and transport.

All other papers

An axion-like spectator during inflation can trigger a tachyonic instability which amplifies the modes of one of the helicities of the gauge field, resulting in the production of parity-violating gravitational waves (GWs). In this paper we investigate the impact of the coupling $RFF$ of the gauge field to gravity on the production of GWs. We find that such a coupling introduces a multiplicative factor to the tachyonic mass, which effectively enhances the amplitude of the gauge field modes. Produced GWs are expected to be observed by future space-based GW detectors. Additionally, we find that the strong backreaction due to particle production leads to multiple peaks in the energy spectrum of GWs.

Nick Tusay (1 and 2 and 3), Sofia Z. Sheikh (3 and 4 and 5), Evan L. Sneed (6 and 4 and 3), Wael Farah (4 and 5), Alexander W. Pollak (5), Luigi F. Cruz (5), Andrew Siemion (4 and 5 and 7), David R. DeBoer (7), Jason T. Wright (1 and 2 and 3) ((1) Department of Astronomy & Astrophysics, The Pennsylvania State University, (2) Center for Exoplanets and Habitable Worlds, (3) Penn State Extraterrestrial Intelligence Center, (4) Breakthrough Listen, University of California, Berkeley, (5) SETI Institute, (6) Department of Earth & Planetary Sciences, University of California, Riverside, (7) Department of Astronomy, University of California, Berkeley)

Planet-planet occultations (PPOs) occur when one exoplanet occults another exoplanet in the same system as seen from the Earth's vantage point. PPOs may provide a unique opportunity to observe radio "spillover" from extraterrestrial intelligences' (ETIs) radio transmissions or radar being transmitted from the further exoplanet towards the nearer one for the purposes of communication or scientific exploration. Planetary systems with many tightly packed, low-inclination planets, such as TRAPPIST-1, are predicted to have frequent PPOs. Here, the narrowband technosignature search code turboSETI was used in combination with the newly developed NbeamAnalysis filtering pipeline to analyze 28 hours of beamformed data taken with the Allen Telescope Array (ATA) during late October and early November 2022, from 0.9--9.3~GHz, targeting TRAPPIST-1. During this observing window, 7 possible PPO events were predicted using the NbodyGradient code. The filtering pipeline reduced the original list of 25 million candidate signals down to 6 million by rejecting signals that were not sky-localized and, from these, identified a final list of 11127 candidate signals above a power law cutoff designed to segregate signals by their attenuation and morphological similarity between beams. All signals were plotted for visual inspection, 2264 of which were found to occur during PPO windows. We report no detection of signals of non-human origin, with upper limits calculated for each PPO event exceeding EIRPs of 2.17--13.3 TW for minimally drifting signals and 40.8--421 TW in the maximally drifting case. This work constitutes the longest single-target radio SETI search of TRAPPIST-1 to date.

The escaping ionising efficiency from galaxies, $f_{\rm esc}\xi_{\rm ion}$, is a crucial ingredient for understanding their contribution to hydrogen reionisation, but both of its components, $f_{\rm{esc}}$ and $\xi_{\rm{ion}}$, are extremely difficult to measure. We measure the average escaping ionising efficiency $\langle f_{\rm{esc}} \xi_{\rm{ion}}\rangle$ of galaxies at $z=5$ implied by the mean level of ionisation in the intergalactic medium via the Lyman-$\alpha$ forest. We use the fact that $\dot{N}_{\rm{ion}} = \rho_{\rm{UV}} f_{\rm{esc}} \xi_{\rm{ion}}$, the product of the ionising output and the UV density $\rho_{\rm{UV}}$, can be calculated from the known average strength of the UV background and the mean free path of ionising photons. These quantities, as well as $\rho_{\rm{UV}}$, are robustly measured at $z\leq6$. We calculate the missing factor of $\langle f_{\rm{esc}} \xi_{\rm{ion}}\rangle$ at $z=5$, during a convenient epoch after hydrogen reionisation has completed and the intergalactic medium has reached ionisation equilibrium, but before bright quasars begin to dominate the ionising photon production. Intuitively, our constraint corresponds to the required escaping ionising production from galaxies in order to avoid over- or under-ionising the Lyman-$\alpha$ forest. We obtain a measurement of $\log \langle f_{\rm{esc}} \xi_{\rm{ion}}\rangle /$erg Hz$^{-1}$ $ = 24.28_{-0.20}^{+0.21}$ at $z=5$ when integrating $\rho_\text{UV}$ down to a limiting magnitude $M_\text{lim}=-11$. Our measurement of the escaping ionising efficiency of galaxies is in rough agreement with both observations and most models.

Michael Zhang, Jacob L. Bean, David Wilson, Girish Duvvuri, Christian Schneider, Heather A. Knutson, Fei Dai, Karen A. Collins, Cristilyn N. Watkins, Richard P. Schwarz, Khalid Barkaoui, Avi Shporer, Keith Horne, Ramotholo Sefako, Felipe Murgas, Enric Palle

TOI-836 is a $\sim2-3$ Gyr K dwarf with an inner super Earth ($R=1.7\,R_\oplus$, $P=3.8\,d$) and an outer mini Neptune ($R=2.6\,R_\oplus$, $P=8.6\,d$). Recent JWST/NIRSpec 2.8--5.2 $\mu$m observations have revealed flat transmission spectra for both planets. We present Keck/NIRSPEC observations of escaping helium from this system. While planet b shows no absorption in the 1083 nm line to deep limits ($<0.2$\%), 836c shows strong (0.7\%) absorption in both visits. These results demonstrate that the inner super-Earth has lost its primordial atmosphere while the outer mini-Neptune has not. Self-consistent 1D radiative-hydrodynamic models of c using pyTPCI, an updated version of The PLUTO-CLOUDY Interface, reveal that the helium signal is highly sensitive to metallicity: its equivalent width collapses by a factor of 13 as metallicity increases from 10x to 100x solar, and by a further factor of 12 as it increases to 200x solar. The observed equivalent width is 88\% of the model prediction for 100x metallicity, suggesting that c may have an atmospheric metallicity close to 100x solar. This is similar to K2-18b and TOI-270d, the first two mini-Neptunes with detected absorption features in JWST transmission spectra. We highlight the helium triplet as a potentially powerful probe of atmospheric composition, with complementary strengths and weaknesses to atmospheric retrievals. The main strength is its extreme sensitivity to metallicity in the scientifically significant range of 10--200x solar, and the main weakness is the enormous model uncertainties in outflow suppression and confinement mechanisms, such as magnetic fields and stellar winds.

Recent observations by the James Webb Space Telescope confirm the existence of massive black holes ($>10^6$ $\rm{M_{\odot}}$) beyond the redshift of $z=10$. However, their formation mechanism(s) still remain an open question. Light seed black holes are one such formation pathway, forming as the end stage of metalfree (Population III) stars. Light seed black holes can grow into massive black holes as long as they accrete near the Eddington limit for substantial periods or undergo several bursts of super-Eddington accretion. In this work, our aim is to ascertain if light seeds can grow in gas rich galaxies - similar to those expected at high redshift (z $\gtrsim 10$). Using the Arepo code, we follow self-consistently the formation of Population III stars and black holes in galaxies with total masses in the range $10^8$ $\rm{M_{\odot}}$. We find that in the absence of feedback, black holes can grow to $10^5$ $\rm{M_{\odot}}$ in just $10^4$ years. These black holes do not decouple from the gas clumps in which they are born and are able to accrete at hyper-Eddington rates. In the presence of supernova feedback, the number of actively growing black holes diminishes by an order of magnitude. However, we still observe hyper-Eddington accretion in approximately 1 % of the black hole population despite supernova feedback. This (idealised) work lays the foundation for future works, where we will test our models in a cosmological framework.

Chloë E. Benton, Erica J. Nelson, Tim B. Miller, Rachel Bezanson, Justus Gibson, Abigail I Hartley, Marco Martorano, Sedona H. Price, Katherine A. Suess, Arjen van der Wel, Pieter van Dokkum, John R. Weaver, Katherine E. Whitaker

Hubble Space Telescope imaging shows that most star-forming galaxies at cosmic noon -- the peak of cosmic star formation history -- appear disk-dominated, leaving the origin of the dense cores in their quiescent descendants unclear. With the James Webb Space Telescope's (JWST) high-resolution imaging to 5 {\mu}m, we can now map the rest-frame near-infrared emission, a much closer proxy for stellar mass distribution, in these massive galaxies. We selected 70 star-forming galaxies with 10$<$log(M)$<$12 and 1.5$<$z$<$3 in the CEERS survey and compare their morphologies in the rest-frame optical to those in the rest-frame near-IR. While the bulk of these galaxies are disk-dominated in 1.5 {\mu}m (rest-frame optical) imaging, they appear more bulge-dominated at 4.4 {\mu}m (rest-frame near-infrared). Our analysis reveals that in massive star-forming galaxies at z$\sim$2, the radial surface brightness profiles steepen significantly, from a slope of $\sim$0.3/dex at 1.5 {\mu}m to $\sim$1.4/dex at 4.4 {\mu}m within radii $<$ 1 kpc. Additionally, we find their total flux contained within the central 1 kpc is approximately 7 times higher in F444W than in F150W. In rest-optical emission, a galaxy's central surface density appears to be the strongest indicator of whether it is quenched or star-forming. Our most significant finding is that at redder wavelengths, the central surface density ratio between quiescent and star-forming galaxies dramatically decreases from $\sim$10 to $\sim$1. This suggests the high central densities associated with galaxy quenching are already in place during the star-forming phase, imposing new constraints on the transition from star formation to quiescence.

C. R. Morgan, M. L. Balogh, A. Boselli, M. Fossati, C. Lawlor-Forsyth, E. Sazonova, P. Amram, M. Boquien, J. Braine, L. Cortese, P. Côté, J. C. Cuillandre, L. Ferrarese, S. Gwyn, G. Hensler, Junais, J. Roediger

We examine the prevalence of truncated star-forming disks in the Virgo cluster down to $M_* \simeq 10^7 ~\text{M}_{\odot}$. This work makes use of deep, high-resolution imaging in the H$\alpha$+[NII] narrow-band from the Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE) and optical imaging from the Next Generation Virgo Survey (NGVS). To aid in understanding the effects of the cluster environment on star formation in Virgo galaxies, we take a physically-motivated approach to define the edge of the star-forming disk via a drop-off in the radial specific star formation rate profile. Comparing with the expected sizes of normal galactic disks provides a measure of how truncated star-forming disks are in the cluster. We find that truncated star-forming disks are nearly ubiquitous across all regions of the Virgo cluster, including beyond the virial radius (0.974 Mpc). The majority of truncated disks at large clustercentric radii are of galaxies likely on first infall. As the intra-cluster medium density is low in this region, it is difficult to explain this population with solely ram-pressure stripping. A plausible explanation is that these galaxies are undergoing starvation of their gas supply before ram-pressure stripping becomes the dominant quenching mechanism. A simple model of starvation shows that this mechanism can produce moderate disk truncations within 1-2 Gyr. This model is consistent with `slow-then-rapid' or `delayed-then-rapid' quenching, where the early starvation mode drives disk truncations without significant change to the integrated star formation rate, and the later ram-pressure stripping mode rapidly quenches the galaxy. The origin of starvation may be in the group structures that exist around the main Virgo cluster, which indicates the importance of understanding pre-processing of galaxies beyond the cluster virial radius.

For over two decades, gamma-ray burst (GRB) prompt emission spectra were modelled with smoothly-broken power laws (Band function), and a positive and tight correlation between the spectral rest-frame peak energy $E_p$ and the total isotropic-equivalent luminosity $L_{iso}$ was found, constituting the so-called Yonetoku relation. However, more recent studies show that many prompt emission spectra are well described by the synchrotron radiation model, hence significantly deviating from the Band function. In this work, we test the impact of a more suited spectral model such as an idealized synchrotron spectrum from non-thermal electrons on the Yonetoku relation and its connection with physical parameters. We select GRBs with measured redshift observed by Fermi/GBM together with high energy observations (>30 MeV), and perform spectral analysis dividing them in two samples: the single-bin sample, using the light curve peak spectrum of each GRB, and the multiple-bins sample, where we explore the whole duration of 13 bright bursts with time-resolved spectral analysis. We observed that the $E_p$ of synchrotron spectra in fast-cooling regime ($\nu_m/\nu_c\gg1$) is generally larger than the one provided by the Band function. For this reason, we do not find any $E_p-L_{iso}$ correlation in our samples except for the GRBs in an intermediate-cooling regime ($1<\nu_m/\nu_c<3$), namely where peak and break energies are very close. We instead find in both our samples a new tight correlation between the rest-frame cooling frequency $\nu_{c,z}$ and $L_{iso}$: $\nu_{c,z} \propto L_{iso}^{(0.53 \pm 0.06)}$. These results suggest that, assuming that prompt emission spectra are produced by synchrotron radiation, the physical relation is between $\nu_{c,z}$ and $L_{iso}$. The fit of the Band function to an intrinsic synchrotron spectrum returns peak energy values $E_{p,z}^{Band} \sim \nu_{c,z}$.

Lindsay R. House, Karl Gebhardt, Keely Finkelstein, Erin Mentuch Cooper, Dustin Davis, Daniel J. Farrow, Donald P. Schneider

We are merging a large participatory science effort with machine learning to enhance the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). Our overall goal is to remove false positives, allowing us to use lower signal-to-noise data and sources with low goodness-of-fit. With six million classifications through Dark Energy Explorers, we can confidently determine if a source is not real at over 94% confidence level when classified by at least ten individuals; this confidence level increases for higher signal-to-noise sources. To date, we have only been able to apply this direct analysis to 190,000 sources. The full sample of HETDEX will contain around 2-3M sources, including nearby galaxies ([O II] emitters), distant galaxies (Lyman-alpha emitters or LAEs), false positives, and contamination from instrument issues. We can accommodate this tenfold increase by using machine learning with visually-vetted samples from Dark Energy Explorers. We have already increased by over ten-fold in number of sources that have been visually vetted from our previous pilot study where we only had 14,000 visually vetted LAE candidates. This paper expands on the previous work increasing the visually-vetted sample from 14,000 to 190,000. In addition, using our currently visually-vetted sample, we generate a real or false positive classification for the full candidate sample of 1.2 million LAEs. We currently have approximately 17,000 volunteers from 159 countries around the world. Thus, we are applying participatory or citizen scientist analysis to our full HETDEX dataset, creating a free educational opportunity that requires no prior technical knowledge.

Casey L. Brinkman, Alex S. Polanski, Daniel Huber, Lauren M. Weiss, Diana Valencia, Mykhaylo Plotnykov

Planets and the stars they orbit are born from the same cloud of gas and dust, and the primordial compositions of rocky exoplanets have been assumed to have iron and refractory abundance ratios consistent with their host star. To test this assumption, we modeled the interior iron-to-rock ratio of 20 super-Earth sized (1-1.8R$_{\oplus}$) exoplanets around stars with homogeneously measured stellar parameters. We computed the core mass fraction for each planet and an equivalent ``core mass fraction'' for each host star based on its Fe and Mg abundances. We then fit a linear correlation using two methods (Ordinary Least Squares and Orthogonal Distance Regression) between planetary and stellar core mass fraction, obtaining substantially different slopes between these two methods (m=1.3 $\pm$ 1.0 and m=5.6 $\pm$ 1.6, respectively). Additionally, we find that 75$\%$ of planets have a core mass fraction consistent with their host star to within 1$\sigma$, and do not identify a distinct population of high-density super-Mercuries. Overall, we conclude that current uncertainties in observational data and differences in modeling methods prevent definitive conclusions about the relationship between between planet and host star chemical compositions.

Pranjal R. S., Eric Huff, Elisabeth Krause, Tim Eifler, Spencer Everett, Yu-Hsiu Huang, Jiachuan Xu

We present the first detection of a cluster lensing signal with `Kinematic Lensing' (KL), a novel weak lensing method that combines photometry, spectroscopy, and the Tully-Fisher relation to enable shear measurements with individual source galaxies. This is the second paper in a two-part series aimed at measuring a KL signal from data. The first paper, arXiv:2209.11811, describes the inference pipeline, which jointly forward models galaxy imaging and spectroscopy, and demonstrates unbiased shear inference with simulated data. This paper presents measurements of the lensing signal from the galaxy cluster Abell 2261. We obtain spectroscopic observations of background disk galaxies in the cluster field selected from the CLASH Subaru catalog. The final sample consists of three source galaxies while the remaining are rejected due to insufficient signal-to-noise, spectroscopic failures, and inadequately sampled rotation curves. We apply the KL inference pipeline to the three sources and find the shear estimates to be in broad agreement with traditional weak lensing measurements. The typical shear measurement uncertainty for our sources is $\sigma(g_+)\approx 0.026$, which represents approximately a ten-fold improvement over the weak lensing shape noise. We identify target selection and observing strategy as the key avenues of improvement for future KL programs.

Shadows are often observed in transition disks, which can result from obscuring by materials closer to the star, such as a misaligned inner disk. While shadows leave apparent darkened emission as observational signatures, they have significant dynamical impact on the disk. We carry out 3D radiation hydrodynamical simulations to study shadows in transition disks and find that the temperature drop due to the shadow acts as an asymmetric driving force, leading to spirals in the cavity. These spirals have zero pattern speed following the fixed shadow. The pitch angle is given by tan$^{-1}$($c_s$/$v_\phi$) (6$^{\circ}$ if $h/r$=0.1). These spirals transport mass through the cavity efficiently, with $\alpha \sim 10^{-2}$ in our simulation. Besides spirals, the cavity edge can also form vortices and flocculent streamers. When present, these features could disturb the shadow-induced spirals. By carrying out Monte Carlo Radiative Transfer simulations, we show that these features resemble those observed in near-infrared scattered light images. In the vertical direction, the vertical gravity is no longer balanced by the pressure gradient alone. Instead, an azimuthal convective acceleration term balances the gravity-pressure difference, leading to azimuthally periodic upward and downward gas motion reaching 10% of the sound speed, which can be probed by ALMA line observations.

Understanding the role that magnetic fields play on the stage of galaxy formation requires accurate methods for inferring the properties of extragalactic magnetic fields. Radio synchrotron emission has been the most promising avenue to infer magnetic field strengths across galaxies, with the application of a central assumption: that galactic cosmic rays are in energy equipartition with the magnetic field. In this work, we leverage flexible synthetic observations of a high-resolution magnetohydrodynamic simulation of a Milky Way-like galaxy to review whether true equipartition is capable of reproducing radio observations of galaxies, and investigate its impact on the inference of magnetic field strengths when varying the properties and density distribution of the cosmic rays. We find that imposing equipartition (regardless of scale length) results in cosmic ray electron densities that are unable to generate either the amplitude or the shape of the radio intensity profiles typically observed in spiral galaxies. Instead, observationally motivated smooth distributions of cosmic ray electrons across the galaxy provide a remarkable match to observations. We further demonstrate that assuming equipartition with those mock observations can lead to significant overestimation of the magnetic field strength ($\sim10-50\times$). This overestimation varies with cosmic ray electron densities, cosmic ray spectrum power-law index, and galactic environment, aggravated in inter-arm regions and attenuated in star-forming regions. Our results promote caution when assuming equipartition in observations, and suggest that additional theoretical and numerical work is required to leverage the upcoming generation of radio observations poised to revolutionize our understanding of astrophysical magnetic fields.

G.Bourdarot, F.Eisenhauer, S.Yazıcı, H.Feuchtgruber, J-B Le Bouquin, M.Hartl, C.Rau, J.Graf, N.More, E.Wieprecht, F.Haussmann, F.Widmann, D.Lutz, R.Genzel, F.Gonte, S.Oberti, J.Kolb, J.Woillez, H.Bonnet, D.Schuppe, A.Brara, J.Hartwig, A.Goldbrunner, C.Furchtsam, F.Soller, S.Czempiel, J.Eibl, D.Huber, S.Uysal, I.Treffler, H.Ozdemir, V.Gopinatha, P.Bourget, A.Berdeu, S.Gillessen, T.Ott, P.Berio, O.Boebion, F.Millour, R.Dembet, C.Edouard, T.Gomes, T.Shimizu, A.Drescher, M. Fabricius, J.Shangguan, S.Lagarde, S.Robbe-Dubois, F.Allouche, H.Nowacki, D.Defrere, P.J. V. Garcia, S.Hoenig, L.Kreidbergg, T.Paumard, C.Straubmeier

We present the Wavefront Sensor units of the Gravity Plus Adaptive Optics (GPAO) system, which will equip all 8m class telescopes of the VLTI and is an instrumental part of the GRAVITY+ project. It includes two modules for each Wavefront Sensor unit: a Natural Guide Star sensor with high-order 40x40 Shack-Hartmann and a Laser Guide Star 30x30 sensor. The state-of-the-art AO correction will considerably improve the performance for interferometry, in particular high-contrast observations for NGS observations and all-sky coverage with LGS, which will be implemented for the first time on VLTI instruments. In the following, we give an overview of the Wavefront Sensor units system after completion of their integration and characterization.

Because of the previously observed stability of the 171-day period, the superorbital modulation of the low-mass X-ray binary 4U 1820-30 was considered a consequence of a third star orbiting around the binary. This study aims to further verify this triple model by testing the stability of superorbital period using the light curves collected by X-ray sky monitoring/scanning telescopes from 1987 to 2023. Both power spectral and phase analysis results indicate a significant change in the superorbital period from 171 days to 167 days over this 36-year span. The evolution of the superorbital phase suggests that the superorbital period may have experienced an abrupt change between late 2000 and early 2023 or changed gradually with a period derivative of $\dot P_{sup}=(-3.58 \pm 0.72) \times 10^{-4}$ day/day. We conclude that the superorbital period of 4U 1820-30 was not as stable as anticipated by the triple model, which strongly challenges this hypothesis. Instead, we propose an irradiation-induced mass transfer instability scenario to explain the superorbital modulation of 4U 1820-30.

Shu-Xu Yi, Zhen Zhang, Emre Seyit Yorgancioglu, Shuang-Nan Zhang, Shao-Lin Xiong, Yan-Qiu Zhang

The brightest-of-all-time gamma-ray burst (GRB), GRB 221009A, is the first GRB observed to have emission line (up to 37 MeV) in its prompt emission spectra. It is naturally explained as \pair annihilation line that was Doppler boosted in the relativistic jet of the GRB. In this work, we repeatedly apply the simple optical depth argument to different physical processes necessary to produce an observable \pair annihilation line. This approach results in robust constraints on the physics of the line: We conclude that in GRB 221009A, the \pair pairs were produced at a radius greater than $4.3\times 10^{15}$\,cm from the central engine, and annihilated in a region between $1.4\times 10^{16}$\,cm and $4.3\times 10^{16}$\,cm. From these constraints, we established a self-consistent picture of \pair production, cooling, and annihilation. We also derived a criterion for pair production in the GRB prompt emission: $E_{\rm{iso}} \gtrsim3.3\times 10^{53} E_{\rm{peak},100} (1+z) R^2_{\rm{prod},16}~\text{erg}$. Using this criterion, we find tens of candidate GRBs that could have produced \pair in prompt emissions to annihilate. GRB 221009A is with the highest likelihood according to this criterion. We also predict the presence of a thermal radiation, with a time-evolving black body temperature, sweeping through soft X-ray during the prompt emission phase.

Liying Zhu, Shengbang Qian, Wenping Liao, Jia Zhang, Xiangdong Shi, Linjia Li, Fangbin Meng, Jiangjiao Wang, Azizbek Matekov

Deep and low mass-ratio contact binaries (DLMCBs) are believed to be in the final stage of their contact phase, potentially leading to the formation of fast-rotating single stars such as FK Com-type stars and blue stragglers, as well as luminous red novae. These systems serve as an excellent laboratory for studying stellar coalescence and merging processes. Our search for DLMCBs began in 2004 and has since identified a group of such systems. Together with that collected from the literature, more than 100 DLMCBs have been detected so far. Half of them have had their periods investigated based on O-C curves. Some have shown period increases, while others have exhibited period decreases. Among them, more than half DLMCBs have cyclic variations, suggesting the possibility of the existence of a third body orbiting around the DLMCBs. Furthermore, with more data obtained extending the span of the O-C curve, more cyclic variations could be detected. The high proportion of signs of the presence of third bodies makes them an essential factor to consider when studying the merger of contact binaries.

Aims. To investigate the influence of distance to filaments and dark matter halos on galaxy cold gas content in the empirical model NeutralUniverseMachine (NUM) and the hydrodynamical simulation IllustrisTNG. Methods. We use DisPerSE to identify cosmic web structures and calculate the distance of galaxies to filaments for both observations and models. We show the results of the HI and H2 mass functions, HI- and H2-halo mass relations, HI- and H2-stellar mass relations for galaxies in the NUM model and IllustrisTNG with different distances to filaments and compare them with observational measurements. We also show the evolution of HI, H2 mass densities in different distance to filament bins. Results. We find that the role of filaments in affecting the HI gas is generally less significant compared to the halo environment. There is a weak trend in the observations at z = 0 that low-mass halos lying closer to filaments tend to have reduced HI masses. However, this trend reverses for massive halos with log(Mvir/Msun) > 12.5. This behavior is accurately reproduced in the NUM model due to the dependence of HI gas on the halo formation time, but it does not appear in IllustrisTNG. The influence of filaments on the HI gas becomes slightly weaker at higher redshifts and is only significant for galaxies residing in massive halos in the NUM model. Filaments have almost no impact on the H2-stellar mass relation in both models, confirming that H2 is primarily determined by the galaxy stellar mass and star formation rate.

The most metal-poor stars record the earliest metal enrichment triggered by Population III stars. By comparing observed abundance patterns with theoretical yields of metal-free stars, physical properties of their first star progenitors can be inferred, including zero-age main-sequence mass and explosion energy. In this work, the initial mass distribution (IMF) of first stars is obtained from the largest analysis to date of 406 very metal-poor stars with the newest LAMOST/Subaru high-resolution spectroscopic observations. However, the mass distribution fails to be consistent with the Salpeter IMF, which is also reported by previous studies. Here we modify the standard power-law function with explodability theory. The mass distribution of Population III stars could be well explained by ensuring the initial metal enrichment to originate from successful supernova explosions. Based on the modified power-law function, we suggest an extremely top-heavy or nearly flat initial mass function with a large explosion energy exponent. This indicates that supernova explodability should be considered in the earliest metal enrichment process in the Universe.

Elishevah van Kooten, Adrian Brearley, Denton Ebel, Conel Alexander, Marina Gemma, Dominik Hezel

Chondritic components such as chondrules and matrix are the key time capsules that can help us understand the evolution and dynamics of the protoplanetary disk from which the Solar System originated. Knowledge of where and how these components formed and to what extent they were transported in the gaseous disk provides major constraints to astrophysical models that investigate planet formation. Here, we explore whether chondrules and matrix are genetically related to each other and formed from single reservoirs per chondrite group or if every chondrite represents a unique proportion of components transported from a small number of formation reservoirs in the disk. These static versus dynamic disk interpretations of cosmochemical data have profound implications for the accretion history of the planets in the Solar System. To fully understand the relationship between chondrules and matrix and their potential complementarity, we dive into the petrological nature and origin of matrix, the chemical and isotopic compositions of chondrules and matrix and evaluate these data considering the effect of secondary alteration observed in chondrites and the potential complexity of chondrule formation. Even though we, the authors, have used different datasets and arrived at differing interpretations of chondrule-matrix relationships in the past, this review provides clarity on the existing data and has given us new directions towards future research that can resolve the complementarity debate.

Vivienne Wild, Natalia Vale Asari, Kate Rowlands, Sara L. Ellison, Ho-Hin Leung, Christy Tremonti

In galaxies with significant ongoing star formation there is an impressively tight correlation between total infrared luminosity (L$_{TIR}$) and H$\alpha$ luminosity (L$_{H\alpha}$), when H$\alpha$ is properly corrected for stellar absorption and dust attenuation. This long-standing result gives confidence that both measurements provide accurate estimates of a galaxy's star formation rate (SFR), despite their differing origins. To test the extent to which this holds in galaxies with lower specific SFR (sSFR=SFR/Mgal, where Mgal is the stellar mass), we combine optical spectroscopy from the Sloan Digital Sky Survey (SDSS) with multi-wavelength (FUV to FIR) photometric observations from the Galaxy And Mass Assembly survey (GAMA). We find that L$_{TIR}$/L$_{H\alpha}$increases steadily with decreasing H$\alpha$ equivalent width (W$_{H\alpha}$, a proxy for sSFR), indicating that both luminosities cannot provide a valid measurement of SFR in galaxies below the canonical star-forming sequence. For both `retired galaxies' and `post-starburst galaxies', L$_{TIR}$/L$_{H\alpha}$ can be up to a factor of 30 larger than for star-forming galaxies. The smooth change in L$_{TIR}$/L$_{H\alpha}$, irrespective of star formation history, ionisation or heating source, dust temperature or other properties, suggests that the value of L$_{TIR}$/L$_{H\alpha}$ is given by the balance between star-forming regions and ambient interstellar medium contributing to both L$_{TIR}$ and L$_{H\alpha}$. While L$_{H\alpha}$ can only be used to estimate the SFR for galaxies with W$_{H\alpha}$ > 3A (sSFR $\gtrsim 10^{-11.5}$/yr), we argue that the mid- and far-infrared can only be used to estimate the SFR of galaxies on the star-forming sequence, and in particular only for galaxies with W$_{H\alpha}$ >10 A (sSFR $\gtrsim 10^{-10.5}$/yr). We find no evidence for dust obscured star-formation in post-starburst galaxies.

S. S. Savchenko, D. A. Morozova, S. G. Jorstad, D.A. Blinov, G. A. Borman, A. A. Vasilyev, T. S. Grishina, A. V. Zhovtan, E. N. Kopatskaya, E. G. Larionova, I. S. Troitskiy, Yu. V. Troitskaya, E. V. Shishkina, E. A. Shkodkina

Observations of quasars show that the polarization position angle of the emission coming from them varies greatly over time, including periods called rotations during which the angle changes in an orderly manner. The study proposes a method for identifying such events and assessing their statistical significance. The operation of the method is demonstrated using the example of long-term polarimetric observations of the blazars CTA 102, 3C 454.3, and OT 081. During the analysis of light curves, 51 rotations of the polarization position angle were found and it was shown that for CTA 102 and 3C 454.3 the rotations are predominantly oriented in one direction.

Here, we present the angular diameter distance measurement obtained from the measurement of the Baryonic Acoustic Oscillation (BAO) feature using the completed Dark Energy Survey (DES) data, summarizing the main results of [Phys. Rev. D 110, 063514] and [Phys. Rev. D 110, 063515]. We use a galaxy sample optimized for BAO science in the redshift range 0.6 < z < 1.2, with an effective redshift of $z_{\rm eff}$ = 0.85. Our consensus measurement constrains the ratio of the angular distance to the sound horizon scale to $D_M(z_{\rm eff})/r_d$ = 19.51 $\pm$ 0.41. This measurement is found to be 2.13$\sigma$ below the angular BAO scale predicted by Planck. To date, it represents the most precise measurement from purely photometric data, and the most precise from any Stage-III experiment at such high redshift. The analysis was performed blinded to the BAO position and is shown to be robust against analysis choices, data removal, redshift calibrations and observational systematics.

Jonathan H. Cohn, Maeve Curliss, Jonelle L. Walsh, Kyle M. Kabasares, Benjamin D. Boizelle, Aaron J. Barth, Karl Gebhardt, Kayhan Gültekin, David A. Buote, Jeremy Darling, Andrew J. Baker, Luis C. Ho

We present 0$.\!\!^{\prime\prime}{22}$-resolution CO(2$-$1) observations of the circumnuclear gas disk in the local compact galaxy NGC 384 with the Atacama Large Millimeter/submillimeter Array (ALMA). While the majority of the disk displays regular rotation with projected velocities rising to $370$ km s$^{-1}$, the inner $\sim$0\farcs{5} exhibits a kinematic twist. We develop warped disk gas-dynamical models to account for this twist, fit those models to the ALMA data cube, and find a stellar mass-to-light ratio in the $H$-band of \mlabstract\ and a supermassive black hole (BH) mass ($M_{\mathrm{BH}}$) of $M_{\mathrm{BH}}$ $= (7.26^{+0.43}_{-0.48}$ [$1\sigma$ statistical] $^{+0.55}_{-1.00}$ [systematic])$\times 10^8$ $M_\odot$. In contrast to most previous dynamical $M_{\mathrm{BH}}$ measurements in local compact galaxies, which typically found over-massive BHs compared to the local BH mass$-$bulge luminosity and BH mass$-$bulge mass relations, NGC 384 lies within the scatter of those scaling relations. NGC 384 and other local compact galaxies are likely relics of $z\sim2$ red nuggets, and over-massive BHs in these relics indicate BH growth may conclude before the host galaxy stars have finished assembly. Our NGC 384 results may challenge this evolutionary picture, suggesting there may be increased scatter in the scaling relations than previously thought. However, this scatter could be inflated by systematic differences between stellar- and gas-dynamical measurement methods, motivating direct comparisons between the methods for NGC 384 and the other compact galaxies in the sample.

Anuraag Arya, Harmanjeet Singh Bilkhu, Sandeep Vishwakarma, Hrishikesh Belatikar, Varun Bhalerao, Abhijeet Ghodgaonkar, Jayprakash G. Koyande, Aditi Marathe, N. P. S. Mithun, Sanjoli Narang, Sudhanshu Nimbalkar, Pranav Page, Sourav Palit, Arpit Patel, Amit Shetye, Siddharth Tallur, Shriharsh Tendulkar, Santosh Vadawale, Gaurav Waratkar

Hard X-ray photons with energies in the range of hundreds of keV typically undergo Compton scattering when they are incident on a detector. In this process, an incident photon deposits a fraction of its energy at the point of incidence and continues onward with a change in direction that depends on the amount of energy deposited. By using a pair of detectors to detect the point of incidence and the direction of the scattered photon, we can calculate the scattering direction and angle. The position of a source in the sky can be reconstructed using many Compton photon pairs from a source. We demonstrate this principle in the laboratory by using a pair of Cadmium Zinc Telluride detectors sensitive in the energy range of 20-200 keV. The laboratory setup consists of the two detectors placed perpendicular to each other in a lead-lined box. The detectors are read out by a custom-programmed Xilinx PYNQ FPGA board, and data is then transferred to a PC. The detectors are first calibrated using lines from $^{241}\mathrm{Am}$, $^{155}\mathrm{Eu}$ and $^{133}\mathrm{Ba}$ sources. We irradiated the detectors with a collimated $^{133}\mathrm{Ba}$ source and identified Compton scattering events for the 356 keV line. We run a Compton reconstruction algorithm and correctly infer the location of the source in the detector frame. This comprises a successful technology demonstration for a Compton imaging camera in the Hard X-ray regime. We present the details of our setup, the data acquisition process, and software algorithms, and showcase our results.

We investigate in this work the evolution of the collective fast neutrino flavor conversion (FFC) in a three dimensional (3D) cubic box with periodic boundary condition for three different neutrino angular distributions that are axially asymmetric. We find that the system evolves toward a quasistationary state where the angular distribution of the spatially averaged neutrino electron-minus-muon lepton number (ELN) does not contain any crossings. In the quasistationary state, near flavor equilibration is achieved in one angular domain enclosed by the initial ELN angular crossing contour, similar to the conclusion derived based on simplified one dimensional (1D) system with axially symmetric neutrino angular distributions. We have also performed additional simulations in coordinates where the initial first ELN angular moment has only one nonvanishing spatial component by using the original axially asymmetric ELN angular distributions as well as the corresponding axisymmetric ELN distributions, and find interesting similarity between these two sets. Finally, we propose three different analytical prescriptions generalized from earlier 1D models to 3D models, and evaluate their performances in predicting the post-FFC moments. Our findings suggest that further development of effective classical transport model in multidimensions to capture the effect of FFC is promising.

The prospect of phased laser arrays in space has received considerable attention in recent years, with applications to both planetary defence and space exploration. The most detailed investigation conducted into such a design is that of the DE-STAR phased array, standing for $\textbf{D}$irected $\textbf{E}$nergy $\textbf{S}$ystems for $\textbf{T}$argeting of $\textbf{A}$steroids and explo$\textbf{R}$ation. DE-STAR is a square modular design which exploits the energy created by banks of solar cells in space to generate and amplify the power of a laser beam. A specific DE-STAR design is expressed as DE-STAR n, where 'n' (typically in the range 0 - 4) equates to the log to base 10 of the side, in metres, of a square bank of lasers. With a DE-STAR 4 structure (10 km $\times$ 10 km square) capable of generating a laser beam on the order of tens of gigawatts, clearly there is the potential for such an asset to be deployed as a weapon by targeting locations on Earth. This naturally leads to the question of what effective ways can this possible misuse be removed or at least mitigated, to ensure these powerful space lasers can only be used for their intended purpose, and never malevolent reasons. One solution would be to locate the DE-STAR far enough away so that the laser flux at Earth would be too low. Results indicate that given they should lie 1 au from the Sun, there are feasible locations for DE-STAR 0-2 arrays where there is no danger to Earth. For DE-STAR 4-5, such is their power, safety measures other than those considered here would have to be adopted. Positions in the Solar System where the DE-STAR lasers have no direct line-of-sight with Earth tend to be unstable, and would require regular corrections using an on-board propulsion system, or preferably using push-back from the laser itself.

Billy Gamache, Laurent Drissen, Carmelle Robert, Mykola Posternak

We present preliminary results of a detailed 3D study of supernova remnants in the nearby spiral M51 using data from the SIGNALS survey obtained with the imaging Fourier transform spectrometer SITELLE at the Canada-France-Hawaii telescope (CFHT). Data cubes covering the entire galaxy were gathered in three spectral ranges: SN3 (647-685 nm, R = 5000), SN2 (482-513 nm, R = 600) and SN1 (363-386 nm, R = 1000). The spectral resolution of the SN3 cube allows a precise, spatially resolved measurement of the velocity dispersion of each object. While most of the SNRs were known from previous surveys based on imagery and long-slit spectroscopy, we now provide 2D line flux and kinematic maps for all of them and found 20 new candidates. Most of the SNRs show velocity dispersions ($\sigma$) in the range 30-80 km/s, which is typical for middle-aged SNRs. Finally, we compare the properties of SNRs with those of thousands of HII regions included in the same dataset.

We analyzed MUSE observations of 42 local $z<0.1$ type 1 active galactic nucleus (AGN) host galaxies taken from the Palomar-Green quasar sample and the close AGN reference survey. Our goal was to study the relation between the black hole mass ($M_\bullet$) and bulge stellar velocity dispersion ($\sigma_e$) for type 1 active galaxies. The sample spans black hole masses of $10^{6.0}-10^{9.2}\,M_\odot$, bolometric luminosities of $10^{42.9}-10^{46.0}\,$erg$\,$s$^{-1}$, and Eddington ratios of 0.006-1.2. We avoided AGN emission by extracting the spectra over annular apertures. We modeled the calcium triplet stellar features and measured stellar velocity dispersions of $\sigma_* = 60-230\,$km$\,$s$^{-1}$ for the host galaxies. We find $\sigma_*$ values in agreement with previous measurements for local AGN host galaxies, but slightly lower compared with those reported for nearby X-ray-selected type 2 quasars. Using a novel annular aperture correction recipe to estimate $\sigma_e$ from $\sigma_*$ that considers the bulge morphology and observation beam-smearing, we estimate flux-weighted $\sigma_e = 60-250\,$km$\,$s$^{-1}$. If we consider the bulge type when estimating $M_\bullet$, we find no statistical difference between the distributions of AGN hosts and the inactive galaxies on the $M_\bullet - \sigma_e$ plane for $M_\bullet \lesssim 10^8\,M_\odot$. Conversely, if we do not consider the bulge type when computing $M_\bullet$, we find that both distributions disagree. We find no correlation between the degree of offset from the $M_\bullet - \sigma_e$ relation and Eddington ratio for $M_\bullet \lesssim 10^8\,M_\odot$. The current statistics preclude firm conclusions from being drawn for the high-mass range. We argue these observations support notions that a significant fraction of the local type 1 AGNs and quasars have undermassive black holes compared with their host galaxy bulge properties.

Recent advancements in gravitational wave astronomy hold the promise of a completely new way to explore our Universe. These lecture notes aim to provide a concise but self-contained introduction to key concepts of gravitational wave physics, with a focus on the opportunities to explore fundamental physics in transient gravitational wave signals and stochastic gravitational wave background searches.CERN-TH-2024-152

Petter Taule, Marco Marinucci, Giorgia Biselli, Massimo Pietroni, Filippo Vernizzi

We constrain dark energy and modified gravity within the effective field theory of dark energy framework using the full-shape BOSS galaxy power spectrum, combined with Planck cosmic microwave background (CMB) data and recent baryon acoustic oscillations (BAO) measurements from DESI. Specifically, we focus on a varying braiding parameter $\alpha_{\rm B}$, a running of the ``effective'' Planck mass $\alpha_{\rm M}$, and a constant dark energy equation of state $w$. The analysis is performed with two of these parameters at a time, including all the other standard cosmological parameters and marginalizing over bias and nuisance parameters. The full-shape galaxy power spectrum is modeled using the effective field theory of large-scale structure up to 1-loop order in perturbation theory. We find that the CMB data is most sensitive to $\alpha_{\rm B}$, and that adding large-scale structure information only slightly changes the parameter constraints. However, the large-scale structure data significantly improve the bounds on $\alpha_{\rm M}$ and $w$ by a factor of two. This improvement is driven by background information contained in the BAO, which breaks the degeneracy with $H_0$ in the CMB. We confirm this by comparing the BOSS full-shape information with BOSS BAO, finding no significant differences. This is likely to change with future high-precision full-shape data from Euclid and DESI however, to which the pipeline developed here is immediately applicable.

Suyash Deshmukh, Sean T. Linden, Daniela Calzetti, Angela Adamo, Matteo Messa, Kathryn Grasha, Elena Sabbi, Linda Smith, Kelsey E. Johnson

We present an analysis of Hubble Space Telescope (HST) data from WFC3/UVIS, WFC3/IR and ACS, investigating the young stellar cluster (YSC) population in the face-on spiral galaxy M83. Within the field of view of the IR pointings, we identify 454 sources with compact F814W continuum and Pa$\beta$ line emission with a S/N $\geq 3$ as possible YSC candidates embedded in dust. We refine this selection to 97 candidates based on their spectral energy distributions, multi-wavelength morphology, and photometric uncertainties. For sources that are detected in all bands and have mass $> 10^{2.8} M_{\odot}$ (53 sources), we find that by 2 Myr $75\%$ of infrared-selected star clusters have an $A_{V} \leq 1$, and that by 3 Myr the fraction rises to $\sim 82\%$. This evidence of early clearing implies that pre-supernovae feedback from massive stars are responsible for clearing the majority of the natal gas and dust that surround infrared-selected star clusters in M83. Further, this result is consistent with previous estimates based on WFC3 observations, and adds to the growing body of literature suggesting pre-supernova feedback to be crucial for YSC emergence in normal star-forming galaxies. Finally, we find a weak correlation between the YSC concentration index and age over the first 10 Myr, which matches previous studies and indicates little or no change in the size of YSCs in M83 during their early evolution.

Joshua Fagin, Eric Paic, Favio Neira, Henry Best, Timo Anguita, Martin Millon, Matthew O'Dowd, Dominique Sluse, Georgios Vernardos

Upcoming wide field surveys such as the Rubin Observatory's Legacy Survey of Space and Time (LSST) will monitor thousands of strongly lensed quasars over a 10-year period. Many of these monitored quasars will undergo high magnification events (HMEs) through microlensing as the accretion disk crosses a caustic, places of infinite magnification. Microlensing allows us to map the inner regions of the accretion disk as it crosses a caustic, even at large cosmological distances. The observational cadences of LSST are not ideal for probing the inner regions of the accretion disk, so there is a need to predict HMEs as early as possible to trigger high-cadence multi-band or spectroscopic follow-up observations. Here we simulate a diverse and realistic sample of 10-year quasar microlensing light curves to train a recurrent neural network (RNN) to predict HMEs before they occur by classifying the location of the peaks at each time step. This is the first deep learning approach to predict HMEs. We give estimates at how well we expect to predict HME peaks during LSST and benchmark how our metrics change with different cadence strategies. With LSST-like observations, we can predict approximately 55% of HME peaks corresponding to tens to hundreds per year and a false positive rate of around 20% compared to the number of HMEs. Our network can be continuously applied throughout the LSST survey, providing crucial alerts to optimize follow-up resources.

Maren Cosens, Shelley A. Wright, Karin Sandstrom, Lee Armus, Norman Murray, Jordan N. Runco, Sanchit Sabhlok, James Wiley

Measurements of oxygen abundance throughout galaxies provide insight to the formation histories and ongoing processes. Here we present a study of the gas phase oxygen abundance in the HII regions and diffuse gas of the nearby starburst dwarf galaxy, IC 10. Using the Keck Cosmic Web Imager (KCWI) at W.M. Keck Observatory, we map the central region of IC 10 from 3500-5500A. The auroral [OIII]4363A line is detected with high signal-to-noise in 12 of 46 HII regions observed, allowing for direct measurement of the oxygen abundance, yielding a median and standard deviation of $\rm12+log(O/H)=8.37\pm0.25$. We investigate trends between these directly measured oxygen abundances and other HII region properties, finding weak negative correlations with the radius, velocity dispersion, and luminosity. We also find weak negative correlations between oxygen abundance and the derived quantities of turbulent pressure and ionized gas mass, and a moderate correlation with the derived dynamical mass. Strong line, $\rm R_{23}$ abundance estimates are used in the remainder of the HII regions and on a resolved spaxel-by-spaxel basis. There is a large offset between the abundances measured with $\rm R_{23}$ and the auroral line method. We find that the $\rm R_{23}$ method is unable to capture the large range of abundances observed via the auroral line measurements. The extent of this variation in measured abundances further indicates a poorly mixed interstellar medium (ISM) in IC 10, which is not typical of dwarf galaxies and may be partly due to the ongoing starburst, accretion of pristine gas, or a late stage merger.

We study the contribution of large scalar perturbations sourced by a sharp feature during cosmic inflation to the stochastic gravitational wave background (SGWB), extending our previous work to include the SGWB sourced during the inflationary era. We focus in particular on three-field inflation, since the third dynamical field is the first not privileged by the perturbations' equations of motion and allows a more direct generalization to $N$-field inflation. For the first time, we study the three-field isocurvature perturbations sourced during the feature and include the effects of isocurvature masses. In addition to a two-field limit, we find that the third field's dynamics during the feature can source large isocurvature transients which then later decay, leaving an inflationary-era-sourced SGWB as their only observable signature. We find that the inflationary-era signal shape near the peak is largely independent of the number of dynamical fields and has a greatly enhanced amplitude sourced by the large isocurvature transient, suppressing the radiation-era contribution and opening a new window of detectable parameter space with small adiabatic enhancement. The largest enhancements we study could easily violate backreaction constraints, but much of parameter space remains under perturbative control. These SGWBs could be visible in LISA and other gravitational wave experiments, leaving an almost universal signature of sharp features during multi-field inflation, even when the sourcing isocurvature decays to unobservability shortly afterwards.

Callum J. O'Kane, Ulrike Kuchner, Meghan E. Gray, Alfonso Aragón-Salamanca

Galaxy properties are known to be affected by their environment. This is well established for the extremes of the density scales, between the high-density cluster environment and the low-density field. It is however not fully understood how the intermediate-density regime of cosmic web filaments affects galaxy evolution. We investigate this environmental effect using a mass complete sample of 23,441 galaxies in the Sloan Digital Sky Survey DR8 Main Galaxy Sample (${M}_{\text{Stellar}} > 10^{9.91} \text{M}_{\odot}$). We define 6 environments, probing different density regimes and representing unique stages in the structure formation process, comparing the differences in star formation activity and morphology between them. We find that galaxies in filaments tend to be less star forming and favour more early-type morphologies than those in the field. These differences persist when considering stellar mass-matched samples, suggesting that this is a consequence of the environment. We further investigate whether these trends are a result of the large scale or local environment through constructing samples matched both in stellar mass and local galaxy density. We find that when also matching in local galaxy density, the differences observed between the filament and field population vanishes, concluding that the environmental effect of filaments can be entirely parameterised by a local galaxy density index. We find that differences can still be seen in comparisons with the interiors of clusters, suggesting these are unique environments which can impart additional physical processes not characterised by local galaxy density.

Cosmological models are often motivated and formulated in the language of particle physics, using quantities such as the axion decay constant, but tested against data using ostensibly physical quantities, such as energy density ratios, assuming uniform priors on the latter. This approach neglects priors on the model from fundamental theory, including from particle physics and string theory, such as the preference for sub-Planckian axion decay constants. We introduce a novel approach to learning theory-informed priors for Bayesian inference using normalizing flows (NF), a flexible generative machine learning technique that generates priors on model parameters when analytic expressions are unavailable or difficult to compute. As a test case, we focus on early dark energy (EDE), a model designed to address the Hubble tension. Rather than using uniform priors on the $\textit{phenomenological}$ EDE parameters $f_{\rm EDE}$ and $z_c$, we train a NF on EDE cosmologies informed by theory expectations for axion masses and decay constants. Our method recovers known constraints in this representation while being $\sim 300,000$ times more efficient in terms of total CPU compute time. Applying our NF to $\textit{Planck}$ and BOSS data, we obtain the first theory-informed constraints on EDE, finding $f_{\rm EDE} \lesssim 0.02$ at $95\%$ confidence with an $H_0$ consistent with $\textit{Planck}$, but in $\sim 6\sigma$ tension with SH0ES. This yields the strongest constraints on EDE to date, additionally challenging its role in resolving the Hubble tension.