Abstract visibility
Abstract text size

Papers for Tuesday, Sep 17 2024

Papers with local authors

Sarah M. R. Jeffreson, Eve C. Ostriker, Chang-Goo Kim, Jindra Gensior, Greg L. Bryan, Timothy A. Davis, Lars Hernquist, Sultan Hassan

this https URL

0 votes
Paper 4 — arXiv:2409.09114
0 votes
Paper 4 — arXiv:2409.09114

We present a suite of six high-resolution chemo-dynamical simulations of isolated galaxies, spanning observed disk-dominated environments on the star-forming main sequence, as well as quenched, bulge-dominated environments. We compare and contrast the physics driving star formation and stellar feedback amongst the galaxies, with a view to modeling these processes in cosmological simulations. We find that the mass-loading of galactic outflows is coupled to the clustering of supernova explosions, which varies strongly with the rate of galactic rotation $\Omega = v_c/R$ via the Toomre length, leading to smoother gas disks in the bulge-dominated galaxies. This sets an equation of state in the star-forming gas that also varies strongly with $\Omega$, so that the bulge-dominated galaxies have higher mid-plane densities, lower velocity dispersions, and higher molecular gas fractions than their main sequence counterparts. The star formation rate in five out of six galaxies is independent of $\Omega$, and is consistent with regulation by the mid-plane gas pressure alone. In the sixth galaxy, which has the most centrally-concentrated bulge and thus the highest $\Omega$, we reproduce dynamical suppression of the star formation efficiency (SFE) in agreement with observations. This produces a transition away from pressure-regulated star formation.

Sultan Hassan, Eve C. Ostriker, Chang-Goo Kim, Greg L. Bryan, Jan D. Burger, Drummond B. Fielding, John C. Forbes, Shy Genel, Lars Hernquist, Sarah M. R. Jeffreson, Bhawna Motwani, Matthew C. Smith, Rachel S. Somerville, Ulrich P. Steinwandel, Romain Teyssier

this https URL }{GitHub \,Link.}$

0 votes
Paper 9 — arXiv:2409.09121
0 votes
Paper 9 — arXiv:2409.09121

Traditional star formation subgrid models implemented in cosmological galaxy formation simulations, such as that of Springel & Hernquist (2003, hereafter SH03), employ adjustable parameters to satisfy constraints measured in the local Universe. In recent years, however, theory and spatially-resolved simulations of the turbulent, multiphase, star-forming ISM have begun to produce new first-principles models, which when fully developed can replace traditional subgrid prescriptions. This approach has advantages of being physically motivated and predictive rather than empirically tuned, and allowing for varying environmental conditions rather than being tied to local Universe conditions. As a prototype of this new approach, by combining calibrations from the TIGRESS numerical framework with the Pressure-Regulated Feedback-Modulated (PRFM) theory, simple formulae can be obtained for both the gas depletion time and an effective equation of state. Considering galaxies in TNG50, we compare the "native" simulation outputs with post-processed predictions from PRFM. At TNG50 resolution, the total midplane pressure is nearly equal to the total ISM weight, indicating that galaxies in TNG50 are close to satisfying vertical equilibrium. The measured gas scale height is also close to theoretical equilibrium predictions. The slopes of the effective equations of states are similar, but with effective velocity dispersion normalization from SH03 slightly larger than that from current TIGRESS simulations. Because of this and the decrease in PRFM feedback yield at high pressure, the PRFM model predicts shorter gas depletion times than the SH03 model at high densities and redshift. Our results represent a first step towards implementing new, numerically calibrated subgrid algorithms in cosmological galaxy formation simulations.

Shivam Pandey, Chirag Modi, Benjamin D. Wandelt, Deaglan J. Bartlett, Adrian E. Bayer, Greg L. Bryan, Matthew Ho, Guilhem Lavaux, T. Lucas Makinen, Francisco Villaescusa-Navarro
0 votes
Paper 11 — arXiv:2409.09124
0 votes
Paper 11 — arXiv:2409.09124

To maximize the amount of information extracted from cosmological datasets, simulations that accurately represent these observations are necessary. However, traditional simulations that evolve particles under gravity by estimating particle-particle interactions (N-body simulations) are computationally expensive and prohibitive to scale to the large volumes and resolutions necessary for the upcoming datasets. Moreover, modeling the distribution of galaxies typically involves identifying virialized dark matter halos, which is also a time- and memory-consuming process for large N-body simulations, further exacerbating the computational cost. In this study, we introduce CHARM, a novel method for creating mock halo catalogs by matching the spatial, mass, and velocity statistics of halos directly from the large-scale distribution of the dark matter density field. We develop multi-stage neural spline flow-based networks to learn this mapping at redshift z=0.5 directly with computationally cheaper low-resolution particle mesh simulations instead of relying on the high-resolution N-body simulations. We show that the mock halo catalogs and painted galaxy catalogs have the same statistical properties as obtained from $N$-body simulations in both real space and redshift space. Finally, we use these mock catalogs for cosmological inference using redshift-space galaxy power spectrum, bispectrum, and wavelet-based statistics using simulation-based inference, performing the first inference with accelerated forward model simulations and finding unbiased cosmological constraints with well-calibrated posteriors. The code was developed as part of the Simons Collaboration on Learning the Universe and is publicly available at \url{this https URL}.

Z. Wang, K. W. Bannister, V. Gupta, X. Deng, M. Pilawa, J. Tuthill, J. D. Bunton, C. Flynn, M. Glowacki, A. Jaini, Y. W. J. Lee, E. Lenc, J. Lucero, A. Paek, R. Radhakrishnan, N. Thyagarajan, P. Uttarkar, Y. Wang, N. D. R. Bhat, C. W. James, V. A. Moss, Tara Murphy, J. E. Reynolds, R. M. Shannon, L. G. Spitler, A. Tzioumis, M. Caleb, A. T. Deller, A. C. Gordon, L. Marnoch, S. D. Ryder, S. Simha, C. S. Anderson, L. Ball, D. Brodrick, F. R. Cooray, N. Gupta, D. B. Hayman, A. Ng, S. E. Pearce, C. Phillips, M. A. Voronkov, T. Westmeier
0 votes
Paper 75 — arXiv:2409.10316
0 votes
Paper 75 — arXiv:2409.10316

We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839-10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less, and can detect 10x more FRBs than the current CRAFT incoherent sum system (i.e., 0.5-2 localised FRBs per day), enabling us to better constrain the FRB emission mechanism model and use them as cosmological probes.

Jacob Fields, Hengrui Zhu, David Radice, James M. Stone, William Cook, Sebastiano Bernuzzi, Boris Daszuta
0 votes
Paper 82 — arXiv:2409.10384
0 votes
Paper 82 — arXiv:2409.10384

We introduce an extension to the AthenaK code for general-relativistic magnetohydrodynamics (GRMHD) in dynamical spacetimes using a 3+1 conservative Eulerian formulation. Like the fixed-spacetime GRMHD solver, we use standard finite-volume methods to evolve the fluid and a constrained transport scheme to preserve the divergence-free constraint for the magnetic field. We also utilize a first-order flux correction (FOFC) scheme to reduce the need for an artificial atmosphere and optionally enforce a maximum principle to improve robustness. We demonstrate the accuracy of AthenaK using a set of standard tests in flat and curved spacetimes. Using a SANE accretion disk around a Kerr black hole, we compare the new solver to the existing solver for stationary spacetimes using the so-called "HARM-like" formulation. We find that both formulations converge to similar results. We also include the first published binary neutron star (BNS) mergers performed on graphical processing units (GPUs). Thanks to the FOFC scheme, our BNS mergers maintain a relative error of $\mathcal{O}(10^{-11})$ or better in baryon mass conservation up to collapse. Finally, we perform scaling tests of AthenaK on OLCF Frontier, where we show excellent weak scaling of $\geq 80\%$ efficiency up to 32768 GPUs and $74\%$ up to 65536 GPUs for a GRMHD problem in dynamical spacetimes with six levels of mesh refinement. AthenaK achieves an order-of-magnitude speedup using GPUs compared to CPUs, demonstrating that it is suitable for performing numerical relativity problems on modern exascale resources.

All other papers

The Schwarzschild radii of primordial black holes (PBHs) in the mass range of 6x10^{14}g to 4x10^{19}g match the sizes of nuclei to atoms. I discuss the resulting quantum-mechanical suppression in the accretion of matter by PBHs within gaseous astrophysical environments.

Many modern applications of Bayesian inference, such as in cosmology, are based on complicated forward models with high-dimensional parameter spaces. This considerably limits the sampling of posterior distributions conditioned on observed data. In turn, this reduces the interpretability of posteriors to their one- and two-dimensional marginal distributions, when more information is available in the full dimensional distributions. We show how to learn smooth and differentiable representations of posterior distributions from their samples using normalizing flows, which we train with an added evidence error loss term, to improve accuracy in multiple ways. Motivated by problems from cosmology, we implement a robust method to obtain one and two-dimensional posterior profiles. These are obtained by optimizing, instead of integrating, over other parameters, and are thus less prone than marginals to so-called projection effects. We also demonstrate how this representation provides an accurate estimator of the Bayesian evidence, with log error at the 0.2 level, allowing accurate model comparison. We test our method on multi-modal mixtures of Gaussians up to dimension 32 before applying it to simulated cosmology examples. Our code is publicly available at this https URL.

Gode Angloher, Mukund Bharadwaj, Mariano Cababie, Ivan Colantoni, Ioan Dafinei, Alessio Ludovico De Santis, Natalia Di Marco, Leonie Einfalt, Francesco Ferella, Fernando Ferroni, Stephan Fichtinger, Adriano Filipponi, Torsten Frank, Markus Friedl, Zengwei Ge, Matti Heikinheimo, Maximilian Hughes, Katri Huitu, Moritz Kellermann, Rituparna Maji, Michele Mancuso, Lorenzo Pagnanini, Federica Petricca, Stefano Pirro, Franz Pröbst, Gianni Profeta, Andrei Puiu, Florian Reindl, Karoline Schäffner, Jochen Schieck, Philipp Schreiner, Christoph Schwertner, Kumrie Shera, Martin Stahlberg, Alex Stendhal, Matthew Stukel, Cesare Tresca, Felix Wagner, Shihai Yue, Vanessa Zema, Yong Zhu

While neutrinos are often treated as a background for many dark matter experiments, these particles offer a new avenue for physics: the detection of core-collapse supernovae. Supernovae are extremely energetic, violent and complex events that mark the death of massive stars. During their collapse stars emit a large number of neutrinos in a short burst. These neutrinos carry 99\% of the emitted energy which makes their detection fundamental in understanding supernovae. This paper illustrates how COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches), a sodium iodide (NaI) based dark matter search, will be sensitive to the next galactic core-collapse supernova. The experiment is composed of two separate detectors which will be sensitive to far and nearby supernovae. The inner core of the experiment will consist of NaI crystals operating as scintillating calorimeters, mainly sensitive to the Coherent Elastic Scattering of Neutrinos (CE$\nu$NS) against the Na and I nuclei. The low mass of the cryogenic detectors gives the experiment a sensitivity to close supernovae below 1kpc without pileup. They will see up to hundreds of CE$\nu$NS events from a supernova happening at 200pc. The crystals reside at the center of a cylindrical 230T water tank, instrumented with 30 photomultipliers. This tank acts as a passive and active shield able to detect the Cherenkov radiation induced by impinging charged particles from ambient and cosmogenic radioactivity. A supernova near the Milky Way Center (10kpc) will be easily detected inducing $\sim$60 measurable events, and the water tank will have a 3$\sigma$ sensitivity to supernovae up to 22kpc, seeing $\sim$10 events. This paper shows how, even without dedicated optimization, modern dark matter experiments will also play their part in the multi-messenger effort to detect the next galactic core-collapse supernova.

Collin Lewin, Erin Kara, Aaron J. Barth, Edward M. Cackett, Gisella De Rosa, Yasaman Homayouni, Keith Horne, Gerard A. Kriss, Hermine Landt, Jonathan Gelbord, John Montano, Nahum Arav, Misty C. Bentz, Benjamin D. Boizelle, Elena Dalla Bontà, Michael S. Brotherton, Maryam Dehghanian, Gary J. Ferland, Carina Fian, Michael R. Goad, Juan V. Hernández Santisteban, Dragana Ilić, Jelle Kaastra, Shai Kaspi, Kirk T. Korista, Peter Kosec, Andjelka Kovačević, Missagh Mehdipour, Jake A. Miller, Hagai Netzer, Jack M. M. Neustadt, Christos Panagiotou, Ethan R. Partington, Luka Č. Popović, David Sanmartim, Marianne Vestergaard, Martin J. Ward, Fatima Zaidouni

X-ray reverberation mapping is a powerful technique for probing the innermost accretion disk, whereas continuum reverberation mapping in the UV, optical, and infrared (UVOIR) reveals reprocessing by the rest of the accretion disk and broad-line region (BLR). We present the time lags of Mrk 817 as a function of temporal frequency measured from 14 months of high-cadence monitoring from Swift and ground-based telescopes, in addition to an XMM-Newton observation, as part of the AGN STORM 2 campaign. The XMM-Newton lags reveal the first detection of a soft lag in this source, consistent with reverberation from the innermost accretion flow. These results mark the first simultaneous measurement of X-ray reverberation and UVOIR disk reprocessing lags$\unicode{x2013}$effectively allowing us to map the entire accretion disk surrounding the black hole. Similar to previous continuum reverberation mapping campaigns, the UVOIR time lags arising at low temporal frequencies are longer than those expected from standard disk reprocessing by a factor of 2-3. The lags agree with the anticipated disk reverberation lags when isolating short-timescale variability, namely timescales shorter than the H$\beta$ lag. Modeling the lags requires additional reprocessing constrained at a radius consistent with the BLR size scale inferred from contemporaneous H$\beta$-lag measurements. When we divide the campaign light curves, the UVOIR lags show substantial variations, with longer lags measured when obscuration from an ionized outflow is greatest. We suggest that, when the obscurer is strongest, reprocessing by the BLR elongates the lags most significantly. As the wind weakens, the lags are dominated by shorter accretion disk lags.

Katherine Alatalo, Andreea O. Petric, Lauranne Lanz, Kate Rowlands, Vivian U, Kirsten L. Larson, Lee Armus, Loreto Barcos-Muñoz, Aaron S. Evans, Jin Koda, Yuanze Luo, Anne M. Medling, Kristina E. Nyland, Justin A. Otter, Pallavi Patil, Fernando Peñaloza, Diane Salim, David B. Sanders, Elizaveta Sazonova, Maya Skarbinski, Yiqing Song, Ezequiel Treister, C. Meg Urry

We present the CO(1-0) maps of 28 infrared-bright galaxies from the Great Observatories All-Sky Luminous Infrared Galaxy Survey (GOALS) taken with the Combined Array for Research in Millimeter Astronomy (CARMA). We detect 100GHz continuum in 16 of 28 galaxies, which trace both active galactic nuclei (AGNs) and compact star-forming cores. The GOALS galaxies show a variety of molecular gas morphologies, though in the majority of cases, the average velocity fields show a gradient consistent with rotation. We fit the full continuum SEDs of each of the source using either MAGPHYS or SED3FIT (if there are signs of an AGN) to derive the total stellar mass, dust mass, and star formation rates of each object. We adopt a value determined from luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) of $\alpha_{\rm CO}=1.5^{+1.3}_{-0.8}~M_\odot$ (K km s$^{-1}$ pc$^2)^{-1}$, which leads to more physical values for $f_{\rm mol}$ and the gas-to-dust ratio. Mergers tend to have the highest gas-to-dust ratios. We assume the cospatiality of the molecular gas and star formation, and plot the sample on the Schmidt-Kennicutt relation, we find that they preferentially lie above the line set by normal star-forming galaxies. This hyper-efficiency is likely due to the increased turbulence in these systems, which decreases the freefall time compared to star-forming galaxies, leading to "enhanced" star formation efficiency. Line wings are present in a non-negligible subsample (11/28) of the CARMA GOALS sources and are likely due to outflows driven by AGNs or star formation, gas inflows, or additional decoupled gas components.

Francesco Gabrielli, Lumen Boco, Giancarlo Ghirlanda, Om Sharan Salafia, Ruben Salvaterra, Mario Spera, Andrea Lapi

The stellar initial-mass function (IMF) represents a fundamental quantity in astrophysics and cosmology, describing the mass distribution of stars from low to very-high masses. It is intimately linked to a wide variety of topics, including stellar and binary evolution, galaxy evolution, chemical enrichment, and cosmological reionization. Nonetheless, the IMF still remains highly uncertain. In this work, we aim at determining the IMF with a novel approach based on the observed rates of transients of stellar origin. We parametrize the IMF with a simple, but flexible, Larson shape, and insert it into a parametric model for the cosmic UV luminosity density, local stellar mass density, type Ia supernova (SN Ia), core-collapse supernova (CCSN), and long gamma-ray burst (LGRB) rates as function of redshift. We constrain our free parameters by matching the model predictions to a set of empirical determinations for the corresponding quantities, via a Bayesian Markov-Chain Monte Carlo method. Remarkably, we are able to provide an independent IMF determination, with characteristic mass $m_c=0.10^{+0.24}_{-0.08}\:M_{\odot}$, and high-mass slope $\xi=-2.53^{+0.24}_{-0.27}$, that is in accordance with the widely-used IMF parameterizations (e.g. Salpeter, Kroupa, Chabrier). Moreover, the adoption of an up-to-date recipe for the cosmic metallicity evolution, allows us to constrain the maximum metallicity of LGRB progenitors to $Z_{max}=0.12^{+0.29}_{-0.05}\:Z_{\odot}$. We also find what progenitor fraction actually leads to SN Ia or LGRB emission, put constraints on the CCSN and LGRB progenitor mass ranges, and test the IMF universality. These results show the potential of this kind of approach for studying the IMF, its putative evolution with galactic environment and cosmic history, and the properties of SN Ia, CCSN and LGRB progenitors, especially considering the wealth of data incoming in the future.

Yoo Jung Kim, Michael P. Fitzgerald, Jonathan Lin, Yinzi Xin, Daniel Levinstein, Steph Sallum, Nemanja Jovanovic, Sergio Leon-Saval

We investigate the potential of photonic lantern (PL) fiber fed spectrometers for two-dimensional spectroastrometry. Spectroastrometry, a technique for studying small angular scales by measuring centroid shifts as a function of wavelength, is typically conducted using long-slit spectrographs. However, slit-based spectroastrometry requires observations with multiple position angles to measure two-dimensional spectroastrometric signals. In a typical configuration of PL-fed spectrometers, light from the focal plane is coupled into the few-moded PL, which is then split into several single-mode outputs, with the relative intensities containing astrometric information. The single-moded beams can be fed into a high-resolution spectrometer to measure wavelength-dependent centroid shifts. We perform numerical simulations of a standard 6-port PL and demonstrate its capability of measuring spectroastrometric signals. The effects of photon noise, wavefront errors, and chromaticity are investigated. When the PL is designed to have large linear responses to tip-tilts at the wavelengths of interest, the centroid shifts can be efficiently measured. Furthermore, we provide mock observations of detecting accreting protoplanets. PL spectroastrometry is potentially a simple and efficient technique for detecting spectroastrometric signals.

Extreme mass ratio inspirals (EMRIs) are anticipated to be primary gravitational wave sources for LISA (Laser Interferometer Space Antenna). They form in dense nuclear clusters when a compact object (CO) is captured by the central massive black holes (MBHs) due to frequent two-body interactions among orbiting objects. We present a novel Monte Carlo approach to evolve the post-Newtonian (PN) equations of motion of a CO orbiting an MBH accounting for two-body relaxation locally on the fly, without the assumption of orbit-averaging. We estimate the fraction $S(a_0)$ of EMRIs to total captures (including direct plunges, DPs) as a function of the initial semi-major axis $a_0$ for COs around MBHs of $M_\bullet\in[10^4\,{\rm M}_\odot,4\times10^6\,{\rm M}_\odot]$. Previous results indicate $S(a_0)\rightarrow 0$ at large $a_0$, with a sharp transition from EMRIs to DPs around a critical scale $a_{\rm c}$. This notion has been recently challenged for low-mass MBHs, with EMRIs forming at $a\gg a_{\rm c}$, the so-called "cliffhangers''. Our simulations confirm their existence, at larger numbers than previously expected. Cliffhangers start to appear for $M_\bullet\lesssim3\times 10^5\,{\rm M}_\odot$ and can account for up to 55% of the overall EMRIs formed. We find $S(a_0)\gg 0$ for $a\gg a_{\rm c}$, reaching values as high as 0.6 for $M_\bullet=10^4\,{\rm M}_\odot$, much larger than previously found. We find that the PN description of the system greatly enhances the number of EMRIs by shifting $a_{\rm c}$ to larger values at all MBH masses, and that the local treatment of relaxation significantly boosts the number of cliffhangers for small MBHs. Our work shows the limitations of standard assumptions for estimating EMRI formation rates, most importantly their dynamical models. Future estimates of rates and properties of EMRIs detectable by LISA should account for these improvements.

Pablo Martínez-Miravé, Irene Tamborra, Miguel Ángel Aloy, Martin Obergaulinger

A statistically significant detection of the diffuse supernova neutrino background (DSNB) is around the corner. To this purpose, we assess the contribution to the DSNB of magnetorotational collapses of massive stars, relying on a suite of state-of-the-art three-dimensional neutrino-magnetohydrodynamic simulations. We find that neutrinos from magnetorotational core collapses boost the high-energy tail of the DSNB spectrum, similar to what is expected from neutrino-driven black hole-forming collapses. The latest data from the Super-Kamiokande Collaboration can already exclude that more than $13\%$ of all collapsing massive stars undergo magnetorotational collapses under optimistic assumptions. A DSNB detection at $3 \sigma$ could take place up to $4$ yr earlier at Super-Kamiokande-Gadolinium or JUNO if the fraction of magnetorotational collapses should be larger than $10\%$. Fascinatingly, if the fraction of magnetorotational stellar collapses should be larger than $7\%$, Hyper-Kamiokande could measure such a fraction at $3\sigma$ after $20$ yr of DSNB data taking. The combination of DSNB and electromagnetic data has the potential to resolve the degenerate contributions from magnetorotational and neutrino-driven black hole-forming collapses, providing crucial insight on the properties of the population of collapsing massive stars.

Simon Schleich, Sudeshna Boro Saikia, Quentin Changeat, Manuel Güdel, Aiko Voigt, Ingo Waldmann

We investigate the impact of using multipoint p-T profiles of varying complexity on the retrieval of synthetically generated hot Jupiter transmission spectra modelled after state-of-the-art observations of the hot Jupiter WASP-39~b with JWST. We perform homogenised atmospheric retrievals with the TauREx retrieval framework on a sample of synthetically generated transmission spectra, accounting for varying cases of underlying p-T profiles, cloud-top pressures, and expected noise levels. These retrievals are performed using a fixed-pressure multipoint p-T prescription with increasing complexity, ranging from isothermal to an eleven-point profile. We evaluate the performance of the retrievals based on the Bayesian model evidence, and the accuracy of the retrievals compared to the known input parameters. We find that performing atmospheric retrievals using an isothermal prescription for the pressure-temperature profile consistently results in wrongly retrieved atmospheric parameters when compared to the known input parameters. For an underlying p-T profile with a fully positive lapse rate, we find that a two-point profile is sufficient to retrieve the known atmospheric parameters, while under the presence of an atmospheric temperature inversion, we find that a more complex profile is necessary. Our investigation shows that, for a data quality scenario mirroring state-of-the-art observations of a hot Jupiter with JWST, an isothermal p-T prescription is insufficient to correctly retrieve the known atmospheric parameters. We find a model complexity preference dependent on the underlying pressure-temperature structure, but argue that a p-T prescription on the complexity level of a four-point profile should be preferred. This represents the overlap between the lowest number of free parameters and highest model preference in the cases investigated in this work.

The merger of two neutron stars probes dense matter in a hot, neutrino-trapped regime. In this work, we investigate how fully accounting for pions, muons, and muon-type neutrinos in the trapped regime may affect the outcome of the merger. By performing fully general-relativistic hydrodynamics simulations of merging neutron stars with equations of state to which we systematically add those different particle species, we aim to provide a detailed assessment of the impact of muons and pions on the merger and post-merger phase. In particular, we investigate the merger thermodynamics, mass ejection and gravitational wave emission. Our findings are consistent with previous expectations, that the inclusion of such microphysical degrees of freedom and finite temperature corrections leads to frequency shifts on the order of 100-200 Hz in the post-merger gravitational wave signal, relative to a fiducial cold nucleonic equation of state model.

We carry out idealized three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of prograde, weakly magnetized, and geometrically thick accretion flows where the gas distribution is misaligned from the black hole spin axis. We evolve the disk for three black hole spins: $a = 0.5, 0.75$, and $0.9375$, and we contrast them with a standard aligned disk simulation with $a = 0.9375$. The tilted disks achieve a warped and twisted steady-state structure, with the outer disk misaligning further away from the black hole and surpassing the initial $24^\circ$ misalignment. However, closer to the black hole, there is evidence of partial alignment, as the inclination angle decreases with radius in this regime. Standing shocks also emerged in proximity to the black hole, roughly at $\sim$ 6 gravitational radii. We show that these shocks act to partially align the inner disk with the black hole spin. The rate of alignment increases with increasing black hole spin magnitude, but in all cases is insufficient to fully align the gas before it accretes. Additionally, we present a toy model of orbit crowding that can predict the location of the shocks in moderate-to-fast rotating black holes, illustrating a potential physical origin for the behavior seen in simulations\textemdash with possible applications in determining the positions of shocks in real misaligned astrophysical systems.

The Sun is a standard reference object for Astrophysics and also a fascinating subject of study in its own right. X-ray and extreme ultraviolet movies of the Sun's atmosphere show an extraordinary diversity of plasma phenomena, from barely visible bursts and jets to coronal mass ejections that impact a large portion of the solar surface. The processes that produce these phenomena, heat the corona and power the solar wind remain actively studied and accurate atomic data are essential for interpreting observations and making model predictions. For the Sun's interior intense effort is focused on resolving the "solar problem," (a discrepancy between solar interior models and helioseismology measurements) and atomic data are central to both element abundance measurements and interior physics such as opacity and nuclear reaction rates. In this article, topics within solar interior and solar atmosphere physics are discussed and the role of atomic data described. Areas of active research are highlighted and specific atomic data needs are identified.

The new in situ measurements of the Solar Orbiter mission contribute to the knowledge of the suprathermal populations in the solar wind, especially of ions and protons whose characterization, although still in the early phase, seems to suggest a major involvement in the interaction with plasma wave fluctuations. Recent studies point to the stimulating effect of suprathermal populations on temperature anisotropy instabilities in the case of electrons already being demonstrated in theory and numerical simulations. Here, we investigate anisotropic protons, addressing the electromagnetic ion-cyclotron (EMIC) and the proton firehose (PFH) instabilities. Suprathermal populations enhance the high-energy tails of the Kappa velocity (or energy) distributions measured in situ, enabling characterization by contrasting to the quasi-thermal population in the low-energy (bi-)Maxwellian core. We use hybrid simulations to investigate the two instabilities (with ions or protons as particles and electrons as fluid) for various configurations relevant to the solar wind and terrestrial magnetosphere. The new simulation results confirm the linear theory and its predictions. In the presence of suprathermal protons, the wave fluctuations reach increased energy density levels for both instabilities and cause faster and/or deeper relaxation of temperature anisotropy. The magnitude of suprathermal effects also depends on each instability's specific (initial) parametric regimes. These results further strengthen the belief that wave-particle interactions govern space plasmas. These provide valuable clues for understanding their dynamics, particularly the involvement of suprathermal particles behind the quasi-stationary non-equilibrium states reported by in situ observations.

Sergio Sánchez-Sanjuán, Jesús Hernández, Ángeles Pérez-Villegas, Carlos Román-Zúñiga, Luis Aguilar, Javier Ballesteros-Paredes, Andrea Bonilla-Barroso

In this work, we analysed young stellar clusters with spatial and kinematic coherence in the Orion star-forming complex. For this study, we selected a sample of pre-main sequence candidates using parallaxes, proper motions and positions on the colour-magnitude diagram. After applying a hierarchical clustering algorithm in the 5D parameter space provided by Gaia DR3, we divided the recovered clusters into two regimes: Big Structures and Small Structures, defined by the number of detected stars per cluster. In the first regime, we found 13 stellar groups distributed along the declination axis in the regions where there is a high density of stars. In the second regime, we recovered 34 clusters classified into two types: 14 as small groups completely independent from the larger structures, including four candidates of new clusters, and 12 classified as sub-structures embedded within five larger clusters. Additionally, radial velocity data from APOGEE-2 and GALAH DR3 was included to study the phase space in some regions of the Orion complex. From the Big Structure regime, we found evidence of a general expansion in the Orion OB1 association over a common centre, giving a clue about the dynamical effects the region is undergoing. Likewise, in the Small Structure regime, the projected kinematics shows the ballistic expansion in the $\lambda$ Orionis association and the detection of likely events of clusters' close encounters in the OB1 association.

T. Rashidi, V. Anari, A. Bartkiewicz, P. Wolak, M. Szymczak, F. Rajabi

We present a comprehensive analysis of the periodic flares observed in the 6.7 GHz methanol transition in G22.356+0.066, utilizing the Maxwell-Bloch equations (MBEs) as a framework to model these phenomena. By solving the one-dimensional MBEs, we describe the behavior of both the quasi-steady-state maser and transient superradiance regimes. Our findings indicate that the observed periodic flares, with varying timescales across different velocities, are consistent with the characteristics of Dicke's superradiance, triggered by a common radiative pump in regions of varying inverted column densities. This work provides new insights into the physical processes governing variability in maser-hosting regions and underscores the significance of superradiance as a powerful radiation mechanism in astrophysical environments.

Feven Markos Hunde, Oliver Newton, Wojciech A. Hellwing, Maciej Bilicki, Krishna Naidoo

Using the high-resolution \Nbody{} cosmological simulation COLOR, we explore the cosmic web (CW) environmental effects on subhalo populations and their internal properties. We use \cactus{}, a new implementation of the state-of-the-art segmentation method \nexus{}, to delineate the simulation volume into nodes, filaments, walls, and voids. We group host halos by virial mass and segment each mass bin into consecutive CW elements. This reveals that subhalo populations in hosts within specific environments differ on average from the cosmic mean. The subhalo mass function is affected strongly, where hosts in filaments typically contain more subhalos (5 to 30\%), while hosts in voids are subhalo-poor, with 50\% fewer subhalos. We find that the abundance of the most massive subhalos, with reduced masses of $\mu\equiv M_\mathrm{sub}/M_{200}\geq0.1$ is most sensitive to the CW environment. A corresponding picture emerges when looking at subhalo mass fractions, $f_\mathrm{sub}$, where the filament hosts are significantly more `granular' (having higher $f_\mathrm{sub}$) than the cosmic mean, while the void hosts have much smoother density distributions (with $f_\mathrm{sub}$ lower by $10{-}40\%$ than the mean). Finally, when we look at the subhalo internal kinematic \vmax{}--\rmax{} relations, we find that subhalos located in the void and wall hosts exhibit density profiles with lower concentrations than the mean, while the filament hosts demonstrate much more concentrated mass profiles. Across all our samples, the effect of the CW environment generally strengthens with decreasing host halo virial mass. Our results show that host location in the large-scale CW introduces significant systematic effects on internal subhalo properties and population statistics. Understanding and accounting for them is crucial for unbiased interpretation of observations related to small scales and satellite galaxies.

High-resolution stellar spectra offer valuable insights into atmospheric parameters and chemical compositions. However, their inherent complexity and high-dimensionality present challenges in fully utilizing the information they contain. In this study, we utilize data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) within the Sloan Digital Sky Survey IV (SDSS-IV) to explore latent representations of chemical abundances by applying five dimensionality reduction techniques: PCA, t-SNE, UMAP, Autoencoder, and VAE. Through this exploration, we evaluate the preservation of information and compare reconstructed outputs with the original 19 chemical abundance data. Our findings reveal a performance ranking of PCA < UMAP < t-SNE < VAE < Autoencoder, through comparing their explained variance under optimized MSE. The performance of non-linear (Autoencoder and VAE) algorithms has approximately 10\% improvement compared to linear (PCA) algorithm. This difference can be referred to as the "non-linearity gap." Future work should focus on incorporating measurement errors into extension VAEs, thereby enhancing the reliability and interpretability of chemical abundance exploration in astronomical spectra.

Tom Narock, Sanchita Pal, Aryana Arsham, Ayris Narock, Teresa Nieves-Chinchilla

Decades of in-situ solar wind measurements have clearly established the variation of solar wind physical parameters. These variable parameters have been used to classify the solar wind magnetized plasma into different types leading to several classification schemes being developed. These classification schemes, while useful for understanding the solar wind originating processes at the Sun and early detection of space weather events, have left open questions regarding which physical parameters are most useful for classification and how recent advances in our understanding of solar wind transients impact classification. In this work, we use neural networks trained with different solar wind magnetic and plasma characteristics to automatically classify the solar wind in coronal hole, streamer belt, sector reversal and solar transients such as coronal mass ejections comprised of both magnetic obstacles and sheaths. Furthermore, our work demonstrates how probabilistic neural networks can enhance the classification by including a measure of prediction uncertainty. Our work also provides a ranking of the parameters that lead to an improved classification scheme with ~96% accuracy. Our new scheme paves the way for incorporating uncertainty estimates into space weather forecasting with the potential to be implemented on real-time solar wind data.

T. Coda (1), T. Oluyide (2), M. S. Lynn (2), J. A. Mader (1), G. Bruce Berriman (2), M. Brodheim (1), C. R. Gelino (2), J. Good (2) ((1) W. M. Keck Observatory, (2) Caltech/IPAC-NExScI)

The W. M. Keck Observatory Archive (KOA) has released the Observers Data Access Portal (ODAP), a web-application that delivers astronomical data from the W. M. Keck Observatory to the scheduled program's principal investigator and their collaborators anywhere in the world in near real-time. Data files and their associated metadata are streamed to a user's desktop machine moments after they are written to disk and archived in KOA. The ODAP User Interface is built in React and uses the WebSocket protocol to stream data between KOA and the user. This document describes the design of the tool, challenges encountered, shows how ODAP is integrated into the Keck observing model, and provides an analysis of usage metrics.

The detection of O- and B-type stars with extremely low-mass companions is very important for understanding the formation and evolution of binary stars. However, their finding remains a challenge because the low-mass components in such systems contribute such small flux to the total. During the searching for pulsations among O- and B-type stars by using the TESS data, we found two short-period and B-type (B9) eclipsing binaries with orbital periods of 1.61613 and 2.37857 days. Photometric solutions of the two close binaries were derived by analyzing the TESS light curves with the W-D method. It is discovered that both of them are detached binaries with extremely low mass ratios of 0.067(2) for TIC 260342097 and 0.140(3) for TIC 209148631, respectively. The determined mass ratio indicates that TIC 260342097 is one of the lowest mass ratios among known B-type binary systems. We showed that the two systems have total eclipses with a broad and flat secondary minimum, suggesting that the photometric parameters could be derived reliably. The absolute parameters of the two binaries are estimated and it is found that the secondary components in the two systems are over-luminous and over-size when compared with the normal low-mass and cool main-sequence (MS) stars. These findings may imply that the two systems are composed of a B-type MS primary and a cool pre-MS secondary with orbital periods shorter than 2.5 days. They are valuable targets to test theories of binary star formation and evolution.

Ruancun Li (Kavli Institute for Astronomy and Astrophysics, Peking University), Claudio Ricci, Luis C. Ho, Benny Trakhtenbrot, Erin Kara, Megan Masterson, Iair Arcavi

this https URL

Time-domain studies of active galactic nuclei (AGNs) offer a powerful tool for understanding black hole accretion physics. Prior to the optical outburst on 23 December 2017, 1ES 1927+654 was classified as a "true" type~2 AGN, an unobscured source intrinsically devoid of broad-line emission in polarized spectra. Through our three-year monitoring campaign spanning X-ray to ultraviolet/optical wavelengths, we analyze the post-outburst evolution of the spectral energy distribution (SED) of 1ES 1927+654. Examination of the intrinsic SED and subsequent modeling using different models reveal that the post-outburst spectrum is best described by a combination of a disk, blackbody, and corona components. We detect systematic SED variability and identify four distinct stages in the evolution of these components. During the event the accretion rate is typically above the Eddington limit. The correlation between ultraviolet luminosity and optical to X-ray slope ($\alpha_\mathrm{OX}$) resembles that seen in previous studies of type 1 AGNs, yet exhibits two distinct branches with opposite slopes. The optical bolometric correction factor ($\kappa_{5100}$) is $\sim 10$ times higher than typical AGNs, again displaying two distinct branches. Correlations among the corona optical depth, disk surface density, and $\alpha_\mathrm{OX}$ provide compelling evidence of a disk-corona connection. The X-ray corona showcases systematic variation in the compactness-temperature plot. Between 200 and 650 days, the corona is "hotter-when-brighter", whereas after 650 days, it becomes "cooler-when-brighter". This bimodal behavior, in conjunction with the bifurcated branches of $\alpha_\mathrm{OX}$ and $\kappa_{5100}$, offers strong evidence of a transition from a slim disk to thin disk $\sim 650$ days after the outburst.

Ruancun Li (Kavli Institute for Astronomy and Astrophysics, Peking University), Luis C. Ho, Claudio Ricci, Benny Trakhtenbrot

The properties of slim accretion disks, while crucial for our understanding of black hole growth, have yet to be studied extensively observationally. We analyze the multi-epoch broad-band spectral energy distribution of the changing-look active galactic nucleus 1ES 1927+654 to derive the properties of its complex, time-dependent accretion flow. The accretion rate decays as $\dot{M} \propto t^{-1.53}$, consistent with the tidal disruption of a $1.1\, M_\odot$ star. Three components contribute to the spectral energy distribution: a central overheated zone resembling a slim disk, an outer truncated thin disk, and a hot corona. Photon trapping in the slim disk triggered by the high initial $\dot{M}$ was characterized by a low radiation efficiency ($3\%$), which later more than doubled ($8\%$) after $\dot{M}$ dropped sufficiently low for the disk to transition to a geometrically thin state. The blackbody temperature profile $T \propto R^{-0.60}$ for the inner overheated zone matches the theoretical expectations of a slim disk, while the effective temperature profile of $T \propto R^{-0.69}$ for the outer zone is consistent with the predictions of a thin disk. Both profiles flatten toward the inner boundary of the disk as a result of Compton cooling in the corona. Our work presents compelling observational evidence for the existence of slim accretion disks and elucidates the key parameters governing their behavior, paving the way for further exploration in this area.

Dark matter is hypothesized to interact with ordinary matter solely through gravity and may be present in compact objects such as strange quark stars. We treat strange quark stars admixed with dark matter as two-fluid systems to investigate the potential effects of dark matter on strange quark stars. Quark matter is described by the quasiparticle model and the extended MIT bag model for comparison. Dark matter is treated as asymmetric, self-interacting, and composed of massive fermionic particles. The two-fluid Tolman-Oppenheimer-Volkoff (TOV) equations are employed to solve for specific stellar properties. Our analysis yields relations between central energy density and mass, radius and mass, as well as tidal deformability and mass. The calculated curves generally align with observational data. In particular, we find that the pattern in which fermionic asymmetric dark matter affects the properties of strange quark stars may not be influenced by the equation of state (EOS) of strange quark matter.

Xunda Sun, Xin Wang, Xiangcheng Ma, Kai Wang, Andrew Wetzel, Claude-André Faucher-Giguère, Philip F. Hopkins, Dušan Kereš, Russell L. Graf, Andrew Marszewski, Jonathan Stern, Guochao Sun, Lei Sun, Keyer Thyme

Using the FIRE-2 cosmological zoom-in simulations, we investigate the temporal evolution of gas-phase metallicity radial gradients of Milky Way-mass progenitors in the redshift range of $0.4<z<3$. We pay special attention to the occurrence of positive (i.e. inverted) metallicity gradients -- where metallicity increases with galactocentric radius. This trend, contrary to the more commonly observed negative radial gradients, has been frequently seen in recent spatially resolved grism observations. The occurrence rate of positive gradients in FIRE-2 is about $\sim10\%$ for $0.4<z<3$, and $\sim16\%$ at higher redshifts ($1.5<z<3$), broadly consistent with observations. Moreover, we investigate the correlations among galaxy metallicity gradient, stellar mass, star formation rate (SFR), and degree of rotational support. Our results show that galaxies with lower mass, higher specific SFR (sSFR), and more turbulent disks are more likely to exhibit positive metallicity gradients. The FIRE-2 simulations show evidence for positive gradients that occur both before and/or after major episodes of star formation, manifesting as sharp rises in a galaxy's star-formation history. Positive gradients occurring before major star-formation episodes are likely caused by metal-poor gas inflows, whereas those appearing afterwards often result from metal-enriched gas outflows, driven by strong stellar feedback. Our results support the important role of stellar feedback in governing the chemo-structural evolution and disk formation of Milky Way-mass galaxies at the cosmic noon epoch.

Kexin Liu, Hong Guo, Sen Wang, Dandan Xu, Shengdong Lu, Weiguang Cui, Romeel Dav'e

In this study, we examine the role of circumgalactic medium (CGM) angular momentum ($j_{\rm CGM}$) on star formation in galaxies, whose influence is currently not well understood. The analysis utilises central galaxies from two hydrodynamical simulations, SIMBA and IllustrisTNG. We observe a substantial divergence in how star formation rates correlate with CGM angular momentum between the two simulations. Specifically, quenched galaxies in IllustrisTNG show high $j_{\rm CGM}$, while in SIMBA, quenched galaxies have low $j_{\rm CGM}$. This difference is attributed to the distinct active galactic nucleus (AGN) feedback mechanisms active in each simulation. Moreover, both simulations demonstrate similar correlations between $j_{\rm CGM}$ and environmental angular momentum ($j_{\rm Env}$) in star-forming galaxies, but these correlations change notably when kinetic AGN feedback is present. In IllustrisTNG, quenched galaxies consistently show higher $j_{\rm CGM}$ compared to their star-forming counterparts with the same $j_{\rm Env}$, a trend not seen in SIMBA. Examining different AGN feedback models in SIMBA, we further confirm that AGN feedback significantly influences the CGM gas distribution, although the relationship between the cold gas fraction and the star formation rate (SFR) remains largely stable across different feedback scenarios.

Sebastián E. Nuza, Matthias Hoeft, Ana Contreras-Santos, Alexander Knebe, Gustavo Yepes

Galaxy cluster mergers are believed to generate large-scale shock waves that are ideal sites for electron acceleration. We compute radio emission light curves for galaxy group and cluster mergers simulated in a cosmological context to study the dependence of radio luminosity on cluster mass, redshift, and impact parameter. We used model galaxy clusters from The Three Hundred project to identify cluster mergers characterised by the two main merging structures and follow their evolution throughout the simulated cosmic history. We found that the median non-thermal radio relic luminosity light curve produced in galaxy cluster mergers can be described by a skewed Gaussian function abruptly rising after core-passage of the secondary cluster that peaks after $\sim0.1-0.8\,$Gyr as a function of $M_{200,1}$, the mass of the primary, displaying a mass-dependent luminosity output increase of $\lesssim10$ to about $\gtrsim10-50$ times relative to the radio emission measured at core-passage for galaxy groups and clusters, respectively. In general, most merger orbits are fairly radial with a median opening angle of $\sim20^{\circ}$ before the collision. We also found that, independent of the cluster mass, less radial mergers tend to last longer, although the trend is weak. Finally, we found that the peak radio luminosity shows a significant correlation with mass, $P_{1.4}\propto M_{200,1}^{2.05}$, demonstrating that this relation holds all the way up from galaxy group scales to the most massive galaxy clusters. We conclude that cluster mass is the primary driver for radio `gischt' median luminosity, although there are significant variations for a given cluster mass. Our simulations suggest that the shock-driven, non-thermal radio emission observed on cluster outskirts are the result of massive galaxy cluster mergers at $z\lesssim1$, peaking at $z\sim0-0.5$.

Recent numerical works, including ours, lend credence to the thesis that ambient environment, i.e., external pressure, affects star-forming ability of clouds & filaments. In continuation with our series of papers on the subject we explore this thesis further by developing hydrodynamic simulations of accreting filaments confined by external pressures in the range $10^{4 -7}$ $K\ cm^{-3}$. Our findings are-\textbf{(i)} irrespective of linemass, filaments fragment to yield spheroidal cores. Initially sub-critical filaments in low to intermediate external pressure environments form broad cores which suggests, weakly self-gravitating filaments must fragment via \emph{collect-and-collapse} mode to form broad cores. Transcritical filaments, by contrast, become susceptible to Jeans-type instability and form pinched cores; \textbf{(ii)} ambient environment bears upon physical properties of filaments including their {\small FWHM$_{fil}$}. Only those initially suffused with subsonic turbulence in Solar Neighbourhood-like environs, however, have {\small FWHM$_{fil}$}$\sim$ 0.1 $pc$. In high pressure environs they not only have smaller widths, but become severely eviscerated. On the contrary, filaments suffused with initially supersonic turbulence are typically broader; \textbf{(iii)} quasi-oscillatory nature of velocity gradients is ubiquitous along filament lengths and its magnitude generally increases with increasing pressure. The periodicity of the velocity gradients approximately matches the fragmentation lengthscale of filaments; \textbf{(iv)} oscillatory features of the radial component of the velocity gradient are a unreliable proxy for detecting signatures of accretion onto filaments; \textbf{(v)} filaments at either extreme of external pressure are inefficient at cycling gas into the dense phase which could reconcile the corresponding inefficiency of star-formation in such environments.

The ultra-high-energy (UHE) gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude $b\approx 10.5^\circ$. This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula (PWN) and supernova remnant (SNR) at UHE. This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023. This source is well detected with significances of 21$\sigma$ and 17$\sigma$ at 8$-$100 TeV and $>$100 TeV, respectively. The corresponding extensions are determined to be 0.23$^{\circ}\pm$0.03$^{\circ}$ and 0.17$^{\circ}\pm$0.03$^{\circ}$. The emission is proposed to originate from the relativistic electrons and positrons accelerated within the PWN of PSR J0007+7303. The energy spectrum is well described by a power-law with an exponential cutoff function $dN/dE = (42.4\pm4.1)(\frac{E}{20\rm\ TeV})^{-2.31\pm0.11}\exp(-\frac{E}{110\pm25\rm\ TeV})$ $\rm\ TeV^{-1}\ cm^{-2}\ s^{-1}$in the energy range from 8 TeV to 300 TeV, implying a steady-state parent electron spectrum $dN_e/dE_e\propto (\frac{E_e}{100\rm\ TeV})^{-3.13\pm0.16}\exp[(\frac{-E_e}{373\pm70\rm\ TeV})^2]$ at energies above $\approx 50 \rm\ TeV$. The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock. Combining the X-ray and gamma-ray emission, the current space-averaged magnetic field can be limited to $\approx 4.5\rm\ \mu G$. To satisfy the multi-wavelength spectrum and the $\gamma$-ray extensions, the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption.

Our Solar System includes the Sun, eight major planets and their moons, along with numerous asteroids, comets, and dust particles, collectively known as the small Solar System bodies. Small bodies are relics from the birth of the Solar System and offer valuable insights into planetary formation and the origins of life. This chapter explores this important component of our Solar System, discussing the formation and evolution of key small body populations and their interrelations.

With nearly two billion stars observed and their corresponding astrometric parameters evaluated in the recent Gaia mission, the number of astrometric binary candidates have risen significantly. Due to the surplus of astrometric data, the current computational methods employed to inspect these astrometric binary candidates are both computationally expensive and cannot be executed in a reasonable time frame. In light of this, a machine learning (ML) technique to automatically classify whether a set of stars belong to an astrometric binary pair via an artificial neural network (ANN) is proposed. Using data from Gaia DR3, the ANN was trained and tested on 1.5 million highly probable true and visual binaries, considering the proper motions, parallaxes, and angular and physical separations as features. The ANN achieves high classification scores, with an accuracy of 99.3%, a precision rate of 0.988, a recall rate of 0.991, and an AUC of 0.999, indicating that the utilized ML technique is a highly effective method for classifying astrometric binaries. Thus, the proposed ANN is a promising alternative to the existing methods for the classification of astrometric binaries.

A common envelope (CE) is proposed as the origin of the early postoutburst spectra of many novae. A simple model is proposed to explain the properties of the CE based on the emission line strengths and an assumed density distribution. Rapid changes in the spectrum during postoutburst decline are suggested as possible evidence for a CE. Time-resolved spectra from the ARAS group show sudden spectral shifts that are correlated with detected gamma ray emission, suggestive of its possible origin on the WD that produces a change in condition within the CE. Episodic mass loss, formation of thea transient heavy element absorption systems, and dissipation of the CE may be triggered by gamma ray emission.

Nora Salem (Haverford College), Karen Masters (Haverford College), David Stark (STScI), Anubhav Sharma (Haverford College)

HI-rich galaxies typically have high star-formation rates (SFR), but there exist interesting HI-rich and low star-forming (low-SF) galaxies. Previous work on a sample of these galaxies identified from HI-MaNGA (HI follow-up to the MaNGA survey) using an infrared indicator of specific-SFR (sSFR; namely W2-W3~<2) could find no single physical process to explain their unusual behaviour. The method by which galaxies are identified as low sSFR may be important in this conclusion. In this Research Note, we explore how an HI-rich, low sSFR sample of HI-MaNGA galaxies differs using H alpha, single stellar population, and ultraviolet estimators of SFR. We find that samples are statistically similar to each other so long as W2-W3~<2 is interpreted as corresponding to sSFR<10^{-11.15} yr^{-1}.

Masafumi Niwano, Michael M. Fausnaugh, Ryan M. Lau, Kishalay De, Roberto Soria, George R. Ricker, Roland Vanderspek, Michael C. B. Ashley, Nicholas Earley, Matthew J. Hankins, Mansi M. Kasliwal, Anna M. Moore, Jamie Soon, Tony Travouillon, Mahito Sasada, Ichiro Takahashi, Yoichi Yatsu, Nobuyuki Kawai

The mechanism of X-ray outbursts in Be X-ray binaries remains a mystery, and understanding their circumstellar disks is crucial for a solution of the mass-transfer problem. In particular, it is important to identify the Be star activities (e.g., pulsations) that cause mass ejection and, hence, disk formation. Therefore, we investigated the relationship between optical flux oscillations and the infrared (IR) excess in a sample of five Be X-ray binaries. Applying the Lomb-Scargle technique to high-cadence optical light curves from the Transiting Exoplanet Survey Satellite (TESS), we detected several significant oscillation modes in the 3 to 24 hour period range for each source. We also measured the IR excess (a proxy for disk growth) of those five sources, using J-band light curves from Palomar Gattini-IR. In four of the five sources, we found anti-correlations between the IR excess and the amplitude of the main flux oscillation modes. This result is inconsistent with the conventional idea that non-radial pulsations drive mass ejections. We propose an alternative scenario where internal temperature variations in the Be star cause transitions between pulsation-active and mass-ejection-active states.

In galactic centers, stars and binaries can be injected into low-angular-momentum orbits, resulting in close encounters with the central supermassive black hole (SMBH). We use $N$-body simulations to study such encounters systematically under a wide range of conditions. Depending on the system parameters (such as $\beta_b$, the ratio of binary tidal radius to pericenter distance $r_p$ to the SMBH, and the compactness of the binary), such close encounters can lead to the break-up of the binary, disruptions of both stars and collision between the stars. Binary break-up produces a hyper-velocity star and a bound star around the SMBH; the peak value of the orbital binding energy depends weakly on $\beta_b$. When $r_p$ is comparable to the stellar tidal radius, sequential disruptions of the stars occur within a time interval much shorter than the initial binary orbital period, potentially exhibiting distinct double TDE features. Stellar collisions occur for a range of $\beta_b$'s, with a few to 10's percent probabilities (depending on the compactness of the binary). In gentle encounters ($\beta_b\lesssim 1$), stellar collisions occur after the pericenter passage, and the merger remnants are typically ejected from the SMBH at a small velocity. In deep encounters ($\beta_b\gtrsim 1$), collisions occur near the pericenter, and the merger remnants are typically bound to the SMBH. We suggest that stellar collisions induced by binary-SMBH encounters may produce exotic stars in galactic centers, trigger accretion flares onto the SMBH due to the mass loss, and result in bound merger remnants causing repeated partial TDEs.

Guowei Ren (XMU), Shuying Zhou (XMU), Mouyuan Sun (XMU), Yongquan Xue (USTC)

The characteristic timescale at which the variability of active galactic nuclei (AGNs) turns from red noise to white noise can probe the accretion physics around supermassive black holes (SMBHs). A number of works have studied the characteristic timescale of quasars and obtained quite different scaling relations between the timescale and quasar physical properties. One possible reason for the discrepancies is that the characteristic timescale can be easily underestimated if the light curves are not long enough. In this work, we construct well-defined AGN samples to observationally test the relationships between the characteristic timescale and AGN properties obtained by previous works. Our samples eliminate the effects of insufficient light-curve lengths. We confirm that the timescale predictions \citep{Zhou2024} of the Corona Heated Accretion disk Reprocessing model are consistent with our timescale measurements. The timescale predictions by empirically relations \citep[e.g.,][]{Kelly2009} are systematically smaller than our measured ones. Our results provide further evidence that AGN variability is driven by thermal fluctuations in SMBH accretion disks. Future flagship time-domain surveys can critically test our conclusions and reveal the physical nature of AGN variability.

When a star is described as a spectral class G2V, we know its approximate mass, temperature, age, and size. At more than 5,700 exoplanets discovered, it is a natural developmental step to establish a classification for them, such as for example, the Harvard classification for stars. This exoplanet classification has to be easily interpreted and present the most relevant information about them and divides them into groups based on certain characteristics. We propose an exoplanet classification, which using an easily readable code, may inform you about a exoplanet's main characteristics. The suggested classification code contains four parameters by which we can quickly determine the range of temperature, mass, density and their eccentricity. The first parameter concerns the mass of an exoplanet in the form of the units of the mass of other known planets, where e.g. M represents the mass of Mercury, E that of Earth, N Neptune, or J Jupiter. The second parameter is the mean Dyson temperature of the extoplanet's orbit, for which we established four main classes: F represents the Frozen class, W the Water class, G the Gaseous class, and R the Roaster class. The third parameter is eccentricity and the fourth parameter is surface attribute which is defined as the bulk density of the exoplanet, where g represents a gaseous planet, w - water planet, t - terrestrial planet, i - iron planet and s - super dense planet. The classification code for Venus, could be EG0t (E - mass in the range of the mass of the Earth, G - Gaseous class, temperature in the range from 450 to 1000 K, 0 - circular or nearly circular orbit, t - terrestrial surface), for Earth it could be EW0t (W - Water class - a possible Habitable zone). This classification is very helpful in, for example, quickly delimiting if a planet can be found in the Habitable zone; if it is terrestrial or not.

In this study, we explore the elongated granulations and stretched dark lanes within the emerging anti-Hale active region NOAA 12720. Utilizing high-resolution observations from the New Vacuum Solar Telescope, we discern a prevalence of elongated granules and stretched dark lanes associated with the emergence of new magnetic flux positioned between two primary opposing magnetic polarities. These elongated granulations and stretched dark lanes exhibit an alignment of strong transverse fields and a significant inclination angle. The endpoints of these features separate from each other, with their midpoints predominantly characterized by blue-shifted signals in the photosphere. This suggests a close association between elongated granules and stretched dark lanes with the newly emerging flux. Additionally, we find that the stretched dark lanes display a more pronounced correlation with strong blue shifts and photospheric transverse magnetic fields compared to the elongated granulations. The transverse magnetic field within these stretched dark lanes reaches magnitudes of approximately 300 to 400 G, and the inclination angle demonstrates an "arch-like" pattern along the trajectory of the stretched dark lane. Based on these observed characteristics, we infer the presence of an emerging flux tube with an "arch-like" shape situated along the stretched dark lane. Consequently, we conclude that the stretched dark lanes likely represent manifestations of the emerging flux tube, while the elongated granulations may correspond to the gaps between the emerging flux tubes.

Three sets of complete multi-color light curves of V694 Peg observed in 2013, 2015 and 2019 were presented and analyzed. Our photometric solutions show that this system is an A-type shallow contact binary in 2013 and 2015, while it converted to a W-type one in 2019. A large cool spot on the component of this binary could explain the conversion, implying the W-type phenomena may be caused by magnetic activity of the components. We have collected available data of this binary and calculated 505 times of light minimum, which span 17 years. The orbital period investigation based on these timings shows there is a long-term period increase at a rate of $dP/dt$ = 4.3($\pm$ 0.3)$\times$ 10$^{-9}$ d yr$^{-1}$ superposed on a periodic variation with a period of 11.81($\pm$ 0.06) years. The cyclic orbital variation may be the result of magnetic activity cycles or the existence of a third body. Till now, only 8 transformed systems including V694 Peg have been reported. Compared with other converting contact systems between A-type and W-type, V694 Peg is recorded as the shortest-period one. All of these converting systems are late-type (later than F7) contact binaries with O'Connell effect and show cyclic period variation, which indicates that magnetic activity may be the reason for the conversion between the two types of contact binaries. For investigating the nature of A-type and W-type phenomena, the discovery of more converting contact binaries is essential.

This paper selected eight totally eclipsing contact binaries for photometric and spectroscopic studies, spectral data were analyzed by ULySS, and photometric data were analyzed using PHOEBE through MCMC sampling. We used two methods to calculate the initial values for running MCMC: one method is a new approach proposed by ourselves to model light curves without spots, while the other method is the genetic algorithm (GA) which can determine physical parameters with spot. Due to the results, these eight targets are all small mass ratio contact binary stars with a mass ratio below 0.25. There are four systems exhibiting O'Connell effect. By adding a dark spot on the primary component, the ideal fitting can be obtained. Meanwhile, it was found that two systems are shallow contact binaries, while the remaining six are moderate contact binaries. An O-C analysis of the eight eclipsing binary stars revealed that seven of them exhibit long-term changes. Four of them display a long-term decreasing trend, while the other three show a long-term increasing trend, and two targets exhibit periodic variations. The decrease in period may be caused by the transfer of matter from the more massive component to the less massive component, while the increase in period may be caused by the transfer of matter from the less massive component to the more massive component. The absolute physical parameters, orbital angular momentum, initial masses, and ages of these eight systems were calculated. Additionally, their mass-luminosity and mass-radius distributions were analyzed.

Jing Wen, Ming Yang, Jian Gao, Bingqiu Chen, Yi Ren, Biwei Jiang

Asymptotic giant branch stars (AGBs) and red supergiant stars (RSGs) exhibit significant mass loss phenomena and are considered important sources of interstellar dust. In this work, we employed an uniform method of spectral energy distribution fitting to analyze a large, and hence statistically significant, sample of approximately 40,000 RSGs and AGBs in the Magellanic Clouds (MCs), providing a new catalog of evolved stars that includes stellar parameters and dust properties. Our results reveal that the total dust-production rate (DPR) of the Large Magellanic Cloud is approximately $9.69\times10^{-6}\,\rm{M_{\odot }\, yr^{-1}}$, while it is around $1.75\times10^{-6}\,\rm{M_{\odot }\,yr^{-1}}$ for the Small Magellanic Cloud, with a few stars significantly contributing to the total DPR. No significant differences were observed in the contributions to DPR from carbon-rich and oxygen-rich (O-rich) evolved stars in the MCs. We explored the relations between stellar parameters (luminosity, infrared color, period, amplitude) and mass-loss rate (MLR) for evolved stars. A prominent turning point at $\log{(L/L_{\odot})} \approx 4.4$ appears in the luminosity-MLR diagram of RSGs, potentially related to the mass-loss mechanism of RSGs. The luminosity-MLR relation of AGBs is highly scattered. The DPR of AGBs shows a clear change with pulsation period and amplitude, with DPR exhibiting a drastic increase at pulsation periods of approximately 300 days and I-band amplitudes greater than 0.5 mag. Metallicity has some impact on the DPR of O-rich stars, with lower metallicity seeming to result in lower mean DPR and a higher proportion of optically thin stars.

Lulu Zhang, Chris Packham, Erin K. S. Hicks, Ric I. Davies, Taro T. Shimizu, Almudena Alonso-Herrero, Laura Hermosa Muñoz, Ismael García-Bernete, Miguel Pereira-Santaella, Anelise Audibert, Enrique López-Rodríguez, Enrica Bellocch, Andrew J. Bunker, Francoise Combes, Tanio Díaz-Santos, Poshak Gandhi, Santiago García-Burillo, Begoña García-Lorenzo, Omaira González-Martín, Masatoshi Imanishi, Alvaro Labiano, Mason T. Leist, Nancy A. Levenson, Cristina Ramos Almeida, Claudio Ricci, Dimitra Rigopoulou, David J. Rosario, Marko Stalevski, Martin J. Ward, Donaji Esparza-Arredondo, Dan Delaney, Lindsay Fuller, Houda Haidar, Sebastian Hönig, Takuma Izumi, Daniel Rouan

Utilizing JWST MIRI/MRS IFU observations of the kiloparsec scale central regions, we showcase the diversity of ionized gas distributions and kinematics in six nearby Seyfert galaxies included in the GATOS survey. Specifically, we present spatially resolved flux distribution and velocity field maps of six ionized emission lines covering a large range of ionization potentials ($15.8-97.1$ eV). Based on these maps, we showcase the evidence of ionized gas outflows in the six targets, and find some highly disturbed regions in NGC\,5728, NGC\,5506, and ESO137-G034. We propose AGN-driven radio jets plausibly play an important role in triggering these highly disturbed regions. With the outflow rates estimated based on [Ne~{\footnotesize V}] emission, we find the six targets tend to have ionized outflow rates converged to a narrower range than previous finding. These results have important implication for the outflow properties in AGN of comparable luminosity.

Lulu Zhang, Ismael García-Bernete, Chris Packham, Fergus R. Donnan, Dimitra Rigopoulou, Erin K. S. Hicks, Ric I. Davies, Taro T. Shimizu, Almudena Alonso-Herrero, Cristina Ramos Almeida, Miguel Pereira-Santaella, Claudio Ricci, Andrew J. Bunker, Mason T. Leist, David J. Rosario, Santiago García-Burillo, Laura Hermosa Muñoz, Francoise Combes, Masatoshi Imanishi, Alvaro Labiano, Donaji Esparza-Arredondo, Enrica Bellocchi, Anelise Audibert, Lindsay Fuller, Omaira González-Martín, Sebastian Hönig, Takuma Izumi, Nancy A. Levenson, Enrique López-Rodríguez, Daniel Rouan, Marko Stalevski, Martin J. Ward

We analyze JWST MIRI/MRS IFU observations of three Seyferts and showcase the intriguing polycyclic aromatic hydrocarbon (PAH) emission characteristics in regions of $\sim 500\,\rm pc$ scales over or around their active galactic nuclei (AGN). Combining the model predictions and the measurements of PAH features and other infrared emission lines, we find that the central regions containing a high fraction of neutral PAHs with small sizes, e.g., those in ESO137-G034, are in highly heated environments, due to collisional shock heating, with hard and moderately intense radiation fields. Such environments are proposed to be associated with inhibited growth or preferential erosion of PAHs, decreasing the average PAH size and the overall abundance of PAHs. We additionally find that the central regions containing a high fraction of ionized PAHs with large sizes, e.g., those in MCG-05-23-016, are likely experiencing severe photo-ionization because of the radiative effects from the radiative shock precursor besides the AGN. The severe photo-ionization can contribute to the ionization of all PAHs and further destruction of small PAHs. Overall, different Seyferts, even different regions in the same galaxy, e.g., those in NGC\,3081, can contain PAH populations of different properties. Specifically, Seyferts that exhibit similar PAH characteristics to ESO137-G034 and MCG-05-23-016 also tend to have similar emission line properties to them, suggesting that the explanations for PAH characteristics of ESO137-G034 and MCG-05-23-016 may also apply generally. These results have promising application in the era of JWST, especially in diagnosing different (i.e., radiative, and kinetic) AGN feedback modes.

The grand minimum in the Sun's activity is a distinctive mode characterized by a magnetic lull that almost completely lacks the emergence of sunspots on the solar surface for an extended duration. The factors driving this transition of an otherwise magnetically active star into a quiescent phase, the processes occurring within the solar interior and across the heliosphere during this period, and the mechanisms leading to the eventual resurgence of surface magnetic activity remain enigmatic. However, there have been sustained efforts in the past few decades to unravel these mysteries by employing a combination of observation, reconstruction and simulation of solar magnetic variability. Here, we summarize recent research on the solar grand minimum and highlight some outstanding challenges - both intellectual and practical - that necessitate further investigations.

M.-G. Dethero, J. Pratt, D.G. Vlaykov, I. Baraffe, T. Guillet, T. Goffrey, A. Le Saux, A. Morison

Theoretical descriptions of convective overshooting often rely on a one-dimensional parameterization of the flow called the filling factor for convection. Several definitions of the filling factor have been developed, based on: (1) the percentage of the volume, (2) the mass flux, and (3) the convective flux that moves through the boundary. We examine these definitions of the filling factor with the goal of establishing their ability to explain differences between 2D and 3D global simulations of stellar interiors that include fully compressible hydrodynamics and realistic microphysics for stars. We study pairs of identical two- and three-dimensional global simulations of stars produced with MUSIC, a fully compressible, time-implicit hydrodynamics code. We examine (1) a $3 M_\odot$ red giant star near the first dredge-up point, (2) a $1 M_\odot$ pre-main-sequence star with a large convection zone, (3) the current sun, and (4) a $20 M_\odot$ main-sequence star with a large convective core. Our calculations of the filling factor based on the volume percentage and the mass flux indicate asymmetrical convection near the surface for each star with an outer convection zone. However, near the convective boundary, convective flows achieve inward-outward symmetry; for 2D and 3D simulations, these filling factors are indistinguishable. A filling factor based on the convective flux is contaminated by boundary-layer-like flows, making theoretical interpretation difficult. We present two new alternatives to these standard definitions, which compare flows at two different radial points. The first is the penetration parameter of Anders et al. (2022). The second is a new statistic, the plume interaction parameter. We demonstrate that both of these parameters capture systematic differences between 2D and 3D simulations around the convective boundary.

A controversy about the possibility of dynamic effects in nuclear screening has been around for several decades. On the one hand, there is the claim that there are no dynamic effects, and that the classic Salpeter correction based on static Debye screening is all that is needed for astrophysical applications. The size of the correction is on the order of 5% in typical solar fusion reactions. On the other hand, numerical simulations have shown that there is a dynamical effect, which essentially cancels the Salpeter correction. The results of the numerical simulations were later independently confirmed. The astrophysical community, however, has so far largely ignored the possibility of dynamical screening. The present paper is meant to serve as a reminder of the controversy. Not only does the claim of an absence of a dynamical effect equally warrant an independent confirmation, but there is motivation for further investigation, such as the assessment of current laboratory experiments and a quantitative study of the dynamical effect in case it will turn out to be real.

S. C. Susarla, A. Chalumeau, C. Tiburzi, E. F. Keane, J. P. W. Verbiest, J. S. Hazboun, M. A. Krishnakumar, F. Iraci, G. M. Shaifullah, A. Golden, A. S. Bak Nielsen, J. Donner, J. M. Grießmeier, M. J. Keith, S. Osłowski, N. K. Porayko, M. Serylak, J. M. Anderson, M. Brüggen, B. Ciardi, R. J. Dettmar, M. Hoeft, J. Künsemöller, D. Schwarz, C. Vocks

High-precision pulsar timing is highly dependent on precise and accurate modeling of any effects that impact the data. It was shown that commonly used Solar Wind models do not accurately account for variability in the amplitude of the Solar wind on both short and long time scales. In this study, we test and validate a new, cutting-edge Solar wind modeling method included in the \texttt{enterprise} software suite through extended simulations, and we apply it to investigate temporal variability in LOFAR data. Our model testing scheme in itself provides an invaluable asset for pulsar timing array (PTA) experiments. As improperly accounting for the solar wind signature in pulsar data can induce false-positive signals, it is of fundamental importance to include in any such investigations. We employ a Bayesian approach utilizing a continuously varying Gaussian process to model the solar wind referred to as Solar Wind Gaussian Process (SWGP). We conduct noise analysis on eight pulsars from the LOFAR dataset with most pulsars having a timespan of $\sim 11$ years encompassing one full solar activity cycle. Our analysis reveals a strong correlation between the electron density at 1 AU and the ecliptic latitude (ELAT) of the pulsar. Pulsars with $|ELAT|< 3^{\circ}$ exhibit significantly higher average electron densities. We observe distinct temporal patterns in electron densities in different pulsars. In particular, pulsars within $|ELAT|< 3^{\circ}$ exhibit similar temporal variations, while the electron densities of those outside this range correlate with the solar activity cycle. The continuous variability in electron density offered in this model represents a substantial improvement over previous models, which assume a single value for piece-wise bins of time. This advancement holds promise for solar wind modeling in future International Pulsar Timing Array data combinations.

Mikhail Kovalev, Zhenwei Li, Jianping Xiong, Azizbek Matekov, Zhang Bo, Xuefei Chen, Zhanwen Han

We present a study of the detached eclipsing binary TV~Mon using spectra from the LAMOST medium-resolution survey and ASAS-SN, CoRoT photometry. We applied multiple-epochs spectral fitting to derive RV and spectral parameters. The analysis of eclipses in CoRoT data told us relative sizes of the stellar components and almost edge-on circular orbit. Combining spectral and photometrical solution we estimated masses and radii of the components: $M_{A,B}=2.063\pm0.033,~0.218\pm0.004~M_\odot$, $R_{A,B}=2.427\pm0.014,~2.901\pm0.016~R_\odot$. SED analysis and Gaia parallax allowed us to get estimation of temperatures $T_{A,B}=7624^{+194}_{-174},~5184^{+130}_{-123}$ K and distance $d=907\pm11$ pc. We identified three $\delta$ Scuti type pulsation frequencies in primary component, while we also suspect TV~Mon having a long period variability with period $P_{\rm long}\sim128$ days and spot activity in secondary component. This system experienced intensive mass transfer and mass ratio reversal in the past, currently showing no signs of mass transfer in the spectra. The low mass component will lose its outer envelope and shrink to the helium white dwarf, which mass and orbital period are in good agreement with evolutionary models predictions.

Lujun Zeng, Mengqing Zhang, Chongyang Ren, Pengfei Zhang, Jingzhi Yan

LS 5039 is one of a handful of $\gamma$-ray binary systems in the Milky Way, comprising a pulsar and a massive O-type companion star with an orbital period of 3.9 day. Recently, we conducted a data analysis using approximately 16 year of Fermi-LAT observations, spanning from 2008 August 4 to 2024 July 8. In our timing analysis, we discovered two new periodic signals with frequencies higher and lower than the known orbital period. The higher-frequency signal has a period of 3.63819 day with a 7.1$\sigma$ confidence level, while the lower-frequency signal has a period of 4.21654 day with a 6.3$\sigma$ confidence level. Additionally, in data from the High Energy Stereoscopic System of Cherenkov Telescopes, two potential signals with periods similar to the two newly discovered ones. Considering that these two signals fall within the same frequency interval as the orbital period, we suggest the possibility of a third body orbiting the barycenter of the LS 5039 binary system, with the new periodic signals arising from specific frequency combinations of the two orbital periods.

Eunyu Lee (1), Dongsu Ryu (1), Hyesung Kang (2) ((1) Department of Physics, College of Natural Sciences, UNIST, Korea, (2) Department of Earth Sciences, Pusan National University, Korea)

In a binary merger of two subclusters with comparable masses, a pair of merger shocks are typically generated, often manifesting as double radio relics. Using cosmological hydrodynamic simulations, we identify major merger events with mass ratio $\mathcal{M}_1/\mathcal{M}_2\lesssim4$ and impact parameter $b/r_{\rm vir,1}\lesssim1$, where $r_{\rm vir,1}$ is the virial radius of the larger subcluster. We analyze merger shock surfaces approximately 1 Gyr after the pericenter passage, focusing on their morphology and the distribution of the Mach number, $M_s$, of their constituent shock zones. The shock surfaces exhibit an elongated shape with a minor-to-major axis ratio of $\sim0.6-0.9$ and cover the area of $\sim5-20\%$ of the enclosed sphere. The area ratio of the two shock surfaces roughly scales with $\mathcal{M}_1/\mathcal{M}_2$, typically positioning the larger shock ahead of the smaller subcluster. The axis connecting the two subclusters generally does not pass through the centers of the shock surfaces, due to the nonzero impact parameter and the turbulent flows around them. The distribution of $M_s$ of shock zones on each surface can be approximated by a log-normal function, peaking at $M_{s,\rm{peak}}\approx2-4.5$ and extending up to $\sim10$. The surface-area-weighted and X-ray-emissivity-weighted average Mach numbers are comparable, with ${\langle{M_s}\rangle}_{\rm{area}}\approx2.3-4.4$ and ${\langle{M_s}\rangle}_{X}\approx2-4$. In contrast, the cosmic-ray-energy-flux-weighted average Mach numbers are higher with ${\langle{M_s}\rangle}_{\rm{CR}}\approx3-5$. This discrepancy aligns with the differences between Mach numbers derived from X-ray and radio observations of radio relic shocks. On the other hand, we find that mostly ${\langle{M_s}\rangle}_{X}\gtrsim2$ for simulated merger shocks, although shocks with $M_{\rm X-ray}\lesssim2$ are often reported in observations.

Prabhakar Tiwari (GTIIT, Shantou), Dominik J. Schwarz (Bielefeld U.), Gong-Bo Zhao (Beijing Observ.), Ruth Durrer (Geneva U., Dept. Theor. Phys.), Martin Kunz (U. Geneva (main)), Hamsa Padmanabhan (U. Geneva (main))

We utilize the Sloan Digital Sky Survey (SDSS) extended Baryon Oscillation Spectroscopic Survey (eBOSS) and Baryon Oscillation Spectroscopic Survey (BOSS) catalogs with precise spectroscopic redshifts to estimate the kinematic redshift dipole caused by the proper motion of the Solar system. We find that the velocity extracted from the kinematic dipole is consistent with Cosmic Microwave Background inferred values. Although the small sky coverage and limited number density of the SDSS sources constrain us from obtaining precise and robust measurements, we leverage the redshift dipole method to estimate the kinematic dipole. The velocity measurements in this study are insensitive to intrinsic clustering, associated with the source count dipole. The kinematic dipole measured in this work and its consistency with CMB values do not guarantee isotropy at large scales. The anisotropy (excess dipole) measured with the NRAO VLA Sky Survey (NVSS) and the WISE Catalog (CatWISE) could be due to the intrinsic distribution of galaxies. The results in this work focus solely on the kinematic dipole term.

Measurements of the redshift drift -- the real time variation of the redshift of distance sources -- are expected in the next couple of decades using next generation facilities such as the ANDES spectrograph at the ELT and the SKAO survey. The unprecedented precision of such observations will demand precise theoretical and numerical modeling of the effect in the standard $\Lambda$CDM cosmology. In this work, we use the Gadget4 $N$-body code to simulate the redshift drift and its fluctuations in $\Lambda$CDM cosmologies, deriving the corresponding power spectra from a simulation with $1024^3$ particles in a $1\textrm{Gpc}\,h^{-1}$ box. Our results provide an estimate for the distribution and amplitude of the fluctuations and the spectra, which match previous work in the literature using Einstein-Boltzmann solvers to within an order of magnitude. Our work provides a methodology for performing statistical analysis of the redshift drift effect and deriving its fluctuation power spectra from future large scale surveys.

Imdad Mahmud Pathi, John Y. H. Soo, Mao Jie Wee, Sazatul Nadhilah Zakaria, Nur Azwin Ismail, Carlton M. Baugh, Giorgio Manzoni, Enrique Gaztanaga, Francisco J. Castander, Martin Eriksen, Jorge Carretero, Enrique Fernandez, Juan Garcia-Bellido, Ramon Miquel, Cristobal Padilla, Pablo Renard, Eusebio Sanchez, Ignacio Sevilla-Noarbe, Pau Tallada-Crespí

ANNZ is a fast and simple algorithm which utilises artificial neural networks (ANNs), it was known as one of the pioneers of machine learning approaches to photometric redshift estimation decades ago. We enhanced the algorithm by introducing new activation functions like tanh, softplus, SiLU, Mish and ReLU variants; its new performance is then vigorously tested on legacy samples like the Luminous Red Galaxy (LRG) and Stripe-82 samples from SDSS, as well as modern galaxy samples like the Physics of the Accelerating Universe Survey (PAUS). This work focuses on testing the robustness of activation functions with respect to the choice of ANN architectures, particularly on its depth and width, in the context of galaxy photometric redshift estimation. Our upgraded algorithm, which we named ANNZ+, shows that the tanh and Leaky ReLU activation functions provide more consistent and stable results across deeper and wider architectures with > 1 per cent improvement in root-mean-square error ($\sigma_{\textrm{RMS}}$) and 68th percentile error ($\sigma_{68}$) when tested on SDSS data sets. While assessing its capabilities in handling high dimensional inputs, we achieved an improvement of 11 per cent in $\sigma_{\textrm{RMS}}$ and 6 per cent in $\sigma_{68}$ with the tanh activation function when tested on the 40-narrowband PAUS dataset; it even outperformed ANNZ2, its supposed successor, by 44 per cent in $\sigma_{\textrm{RMS}}$. This justifies the effort to upgrade the 20-year-old ANNZ, allowing it to remain viable and competitive within the photo-z community today. The updated algorithm ANNZ+ is publicly available at this https URL.

Domain walls are topological defects produced by the spontaneous symmetry-breaking of discrete symmetry during cosmological phase transitions. The horizon-size domain wall can significantly contribute to the energy density in the late-evolution stage. We propose that the density perturbations from the fluctuations in the number density of the horizon-size domain wall could collapse to form primordial black holes. This mechanism becomes effective when the domain wall energy density ratio to that of the radiation reaches about 0.1 in the radiation-dominated universe. We find that models with $Z_2$ symmetry are excluded for interpreting pulsar timing array observations on the nano-Hz gravitational wave background since this model's domain wall number density fluctuations could lead to an overabundance of the primordial black holes. Moreover, models with $N\sim 10$ domain walls also suffer strong constraints from the overabundance of primordial black holes.

Serena Perrotta, Alison L. Coil, David S. N. Rupke, Wenmeng Ning, Brendan Duong, Aleksandar M. Diamond-Stanic, Drummond B. Fielding, James E. Geach, Ryan C. Hickox, John Moustakas, Gregory H. Rudnick, Paul H. Sell, Cameren N. Swiggum, Christy A. Tremonti

High-velocity outflows are ubiquitous in compact, massive (M$_* \sim$ 10$^{11}$ M$_{\odot}$), z $\sim$ 0.5 galaxies with extreme star formation surface densities ($\Sigma_{SFR} \sim$ 2000 M$_{\odot}$ yr$^{-1}$ kpc$^{-2}$). We have previously detected and characterized these outflows using MgII absorption lines. To probe their full extent, we present Keck/KCWI integral field spectroscopy of the [OII] and MgII emission nebulae surrounding all of the 12 galaxies in this study. We find that [OII] is more effective than MgII in tracing low surface brightness, extended emission in these galaxies. The [OII] nebulae are spatially extended beyond the stars, with radial extent R$_{90}$ between 10 and 40 kpc. The nebulae exhibit non-gravitational motions, indicating galactic outflows with maximum blueshifted velocities ranging from -335 to -1920 km s$^{-1}$. The outflow kinematics correlate with the bursty star formation histories of these galaxies. Galaxies with the most recent bursts of star formation (within the last $<$ 3 Myr) exhibit the highest central velocity dispersions ($\sigma >$ 400 km s$^{-1}$), while the oldest bursts have the lowest-velocity outflows. Many galaxies exhibit both high-velocity cores and more extended, slower-moving gas indicative of multiple outflow episodes. The slower, larger outflows occurred earlier and have decelerated as they propagate into the CGM and mix on timescales $>$ 50 Myr.

Lunar reference systems represent a fundamental aspect of lunar exploration. This paper presents a review of the topic in the context of the ESA lunar programme, MoonLight. This paper describes the current state of the art in the definition of the lunar reference frame and introduces TCL, a lunar time scale based on IAU resolutions. It also proposes several possible implementations of this time scale for orbiting and ground-based clocks. Finally, it provides an assessment of the improvement of the lunar reference frame that would result from the addition of lunar retro-reflectors on the Moon surface and the use of orbiter altimetry. This document is an appendix dedicated to lunar reference system definition of a more global document dedicated to the presentation of new concepts in orbit determination and time synchronization of a lunar radio navigation system.

We compared stellar radii derived from asteroseismic scaling relations with those estimated using two independent surface brightness-colour relations (SBCRs) and Gaia DR3 parallaxes. We cross-matched asteroseismic and astrometric data for over 6,400 RGB and RC stars from the APO-K2 catalogue with the TESS Input Catalogue v8.2 to obtain precise V band magnitudes and E(B-V) colour excesses. We then adopted two different SBCRs from the literature to derive stellar radius estimates, denoted as $R^a$ and $R^b$, respectively. We analysed the ratio of these SBCR-derived radii to the asteroseismic radius estimates, $R$, provided in the APO-K2 catalogue. Both SBCRs exhibited good agreement with asteroseismic radius estimates. On average, $R^a$ was overestimated by 1.2% with respect to $R$, while $R^b$ was underestimated by 2.5%. For stars larger than 20 $R_{\odot}$, SBCR radii are systematically lower than asteroseismic ones. The agreement with asteroseismic radii shows a strong dependence on the parallax. The dispersion is halved for stars with a parallax greater than 2.5 mas. In this subsample, $R^b$ showed perfect agreement with $R$, while $R^a$ remained slightly overestimated by 3%. A trend with [Fe/H] of 4% to 6% per dex was found. For stars less massive than about 0.95 $M_{\odot}$, SBCR radii were significantly higher than asteroseismic ones, by about 6%. This overestimation correlated with the presence of extended helium cores in these stars' structures relative to their envelopes. Furthermore, radius ratios showed a dichotomous behaviour at higher masses, mainly due to the presence of several RC stars with SBCR radii significantly lower with respect to asteroseismology. This behaviour originates from a different response of asteroseismic scaling relations and SBCR to [$\alpha$/Fe] abundance ratios for massive stars, both in RGB and RC phases, which is reported here for the first time.

We report analysis of photometry and spectroscopy of a deep Algol-like minimum of the pre-main-sequence star WW Vul in July and August 2016. This revealed substantial reddening due to absorption by circumstellar material. After dereddening, our spectra of WW Vul were consistent with spectral type A3V throughout the event. H{\alpha} is normally in emission in WW Vul. During the minimum, H{\alpha} emission dropped by ~30% and FWHM of the H{\alpha} line reduced by ~15%.

Context. IRAS 16293E is a rare case of a prestellar core being subjected to the effects of at least one outflow.Aims. We want to disentangle the actual structure of the core from the outflow impact and evaluate the evolutionary stage of the core. Methods. Prestellar cores being cold and depleted, the best tracers of their central regions are the two isotopologues of trihydrogren cation which are observable from the ground, ortho-H$_2$D and para-D$_2$H . We used the Atacama Pathfinder EXperiment (APEX) telescope to map the para-D$_2$H$^+$ emission in IRAS 16293E and collected James Clerk Maxwell Telescope (JCMT) archival data of ortho-H$_2$D$^+$ . We compare their emission to that of other tracers, including dust emission, and analyse their abundance with the help of a 1D radiative transfer tool. The ratio of the abundances of ortho-H$_2$D$^+$ and para-D$_2$H$^+$ can be used to estimate the stage of the chemical evolution of the core.Results. We have obtained the first complete map of para-D$_2$H$^+$ emission in a prestellar core. We compare it to a map of ortho-H$_2$D$^+$ and show their partial anti-correlation. This reveals a strongly evolved core with a para-D$_2$H$^+$/ortho-H$_2$D$^+$ abundance ratio towards the centre for which we obtain a conservative lower limit from 3.9 (at 12 K) up to 8.3 (at 8 K) while the high extinction of the core is indicative of a central temperature below 10 K. This ratio is higher than predicted by the known chemical models found in the literature. Para-D$_2$H$^+$ (and indirectly ortho-H$_2$D$^+$) is the only species that reveals the true centre of this core, while the emission of other molecular tracers and dust are biased by the temperature structure that results from the impact of the outflow.Conclusions. This study invites to reconsider the analysis of previous observations of this source and possibly questions the validity of the deuteration chemical models or of the reaction and inelastic collisional rate coefficients of the H$^{+3}$ isotopologue family. This could impact the deuteration clock predictions for all sources.

Philip Masding, Robin Leadbeater

Pulsating stars have been studied using non-linear hydrodynamic codes since the pioneering work of Robert Christy in the 1960s. Modern codes include improvements such as allowing for convection but there is a penalty in terms of computation speed and for some stars convection is not significant. In this work a new version of the Christy program has been developed which can run hundreds of star models to convergence in a day or two of computer time. This allows overall patterns of behaviour to be studied and suitable models for individual case stars to be identified. The star SZ Lyn was chosen as a test case for the model. Light curve and radial velocity data were obtained for this star using amateur equipment. A run of 625 parameter sets (mass, luminosity, effective temperature and hydrogen fraction) identified the best fit parameters for SZ Lyn. Model results show a good fit to the observed data in terms of amplitude, period and shape of the light and velocity curves. In this paper we report on the model developed by PM and radial velocity observations by RL.

Shanmugha Balan, Khushboo K Rao, Kaushar Vaidya, Manan Agarwal, Souradeep Bhattacharya

We investigate the evolutionary stages of four open clusters, Berkeley 39, Collinder 261, NGC 6819, and NGC 7789, of ages ranging from 1.6 -- 6 Gyr. These clusters have previously been classified into dynamically young and intermediate age groups based on the segregation level of BSS with respect to red giant branch stars and main sequence stars, respectively. We identify members of these four clusters using the ML-MOC algorithm on Gaia DR3 data. To examine the relative segregation of cluster members of different evolutionary stages, we utilize cumulative radial distributions, proper motion distributions, and spatial distributions in galactocentric coordinates. Our analysis shows that Berkeley 39 and NGC 6819 exhibit moderate signs of population-wise segregation from evolved to less-evolved members. NGC 7789 shows signs of mass segregation only in the cumulative radial distributions. On the other hand, Collinder 261 exhibits high segregation of BSS in the cumulative radial distribution, while other populations show the same level of segregation.

The present survey represents a continuation of our study of high mass star forming regions in the lines of deuterated molecules, the first results of which were published in Trofimova et al. (2020). This paper presents the results of observations of 50 objects in the line of ortho modification of singly deuterated ammonia NH$_2$D $1_{11}^s - 1_{01}^a$ at frequency 85.9 GHz, carried out with the 20-m radio telescope of the Onsala Space Observatory (Sweden). This line is detected in 29 sources. The analysis of obtained data, as well as the fact that gas density in the investigated sources, according to independent estimates, is significantly lower than the critical density for this NH$_2$D transition, indicate non-LTE excitation of NH$_2$D. Based on non-LTE modeling, estimates of the relative content of the NH$_2$D molecule and the degree of deuterium enrichment were obtained, and the dependencies of these parameters on temperature and velocity dispersion were analyzed with and without taking into account detection limits assuming the same gas density in all sources. An anti-correlation between the NH$_2$D relative abundances and the kinetic temperature is revealed in the temperature range 15-50K. At the same time, significant decrease in the ratio of the NH$_2$D/NH$_3$ abundances with increasing temperature, predicted by the available chemical models, is not observed under the adopted assumptions. An anti-correlation was also revealed between the relative content of the main isotopologue of ammonia NH$_3$ and the velocity dispersion, while no statistically significant correlation with the kinetic temperature of sources in the same temperature range was found.

Marco A. Canossa-Gosteinski, Ana L. Chies-Santos, Cristina Furlanetto, Charles J. Bonatto, Rodrigo Flores-Freitas, William Schoenell, Michael A. Beasley, Roderik Overzier, Basilio X. Santiago, Adriano Pieres, Emílio J. B. Zanatta, Karla A. Alamo-Martinez, Eduardo Balbinot, Anna B. A. Queiroz, Alan Alves-Brito

Understanding faint dwarf galaxies is fundamental to the development of a robust theory of galaxy formation on small scales. Since the discovery of a population of ultra diffuse galaxies (UDGs) rich in globular clusters (GCs) in Coma, an increasing number of studies on low surface brightness dwarf galaxies (LSBds) have been published in recent years. The most massive LSBds have been observed predominantly in groups and clusters, with properties displaying dependence on the environment. In this work, we use deep DECam imaging to systematically identify LSBds and their GC populations around the low-density environment of NGC 3115. We carefully analyse the structure and morphology of 24 candidates, 18 of which are reported for the first time. Most candidates exhibit red colours suggesting a connection between their colour and distance to NGC 3115. We followed up with Gemini GMOS imaging 9 LSBds to properly identify their GC populations. We derive lower limits for the number of GCs associated with each galaxy. Our analysis reveals that they occur around of the same loci of Fornax LSB dwarf GC systems. The relationship between the number of GCs and total mass provides a tool in which, by counting the GCs in these galaxies, we estimate an upper limit for the total mass of these LSB dwarfs, obtaining the mean value of $\sim 3.3\times10^{10}$ M$_{\odot}$. Our results align with expectations for dwarf-sized galaxies, particularly regarding the distribution and specific frequency of their GC systems.

I. A. Strakhov, B. S. Safonov, D. V. Cheryasov

Speckle polarimeter (SPP) is a facility instrument of the 2.5-m telescope of the Caucasian Mountain Observatory of SAI MSU. By design it is a combination of a speckle interferometer and a dual--beam polarimeter. In 2022 we performed a major upgrade of the instrument. New version of the instrument features Hamamatsu ORCA-Quest qCMOS C15550-20UP, having subelectron readout noise, as a main detector, as opposed to EMCCD Andor iXon 897 used in previous version. Optical distortions present in the instrument are considered as they directly affect the accuracy of the speckle interferometric astrometric measurements of binary stars. We identified the Atmospheric Dispersion Compensator (ADC) as the main source of distortions which are not constant and depend on the rotational angles of ADCs prisms. Distortions are estimated using internal calibration light source and multiple binary stars measurements. Method for their correction is developed. Flux ratio estimates are subject to CMOS-specific negative factors: spatially correlated noise and flux-dependent pixel-to-pixel sensitivity difference. We suggest ways to mitigate these factors. The use of speckle transfer function measured using a reference star further improves flux ratio estimation performance. We discuss the precision of the estimates of position angle, separation and flux ratio of binary stars.

We explore the potential primordial connection between the black hole merger events detected by LIGO and the nano-Hz stochastic gravitational wave background observed by pulsar timing arrays. We propose an innovative mechanism for the formation of primordial black holes, suggesting that the Poisson fluctuations within the domain wall network can give rise to horizon-sized overdense regions. Our results indicate a plausible common origin for gravitational wave observations in two different frequency bands, potentially linked to the annihilation of the domain wall network at the QCD scale, while accounting for the accretion effects on primordial black holes. Furthermore, we demonstrate that the bias potential induced by the QCD instanton effect may naturally facilitate the annihilation of the domain wall network during the QCD phase transition. Additionally, our scenario can yield the correct axion dark matter relic abundance, particularly if realized within the clockwork axion framework.

Pragati Sahu, Swadesh Chand, Parijat Thakur, G. C. Dewangan, V. K. Agrawal, Prakash Tripathi, Subhashish Das

We perform a comprehensive timing and broadband spectral analysis using an AstroSat observation of the low-mass black hole X-ray binary H~1743--322 during 2017 outburst. Additionally, we use two Swift/XRT observations, one of which is simultaneous with AstroSat and the other taken three days earlier, for timing analysis. The hardness-intensity diagram indicates that the 2017 outburst was a failed one unlike the previous successful outburst in 2016. We detect type C quasi-periodic oscillation (QPO) in the simultaneous AstroSat and Swift/XRT observations at $\sim0.4$ Hz, whereas an upper harmonic is noticed at $\sim0.9$ Hz in the AstroSat data only. Although these features are found to be energy independent, we notice a shift of $\sim0.08$ Hz in the QPO frequency over the interval of three days. We also investigate the nature of variability in the two consecutive failed outbursts in 2017 and 2018. We detect soft time lags of $23.2\pm12.2$ ms and $140\pm80$ ms at the type C QPO frequencies in 2017 Astrosat and 2018 XMM-Newton data, respectively. The lag-energy spectra from both the outbursts suggest that the soft lags may be associated with the reflection features. The broadband spectral analysis indicates that the source was in the low/hard state during our AstroSat observation. Modeling of the disk and reflection continuum suggests the presence of a significantly truncated accretion disk by at least $27.4~r_{\rm{g}}$ from the ISCO when the source luminosity is $\sim1.6\%$ of the Eddington luminosity.

T. A. Semenikhin, M. V. Kornilov, M. V. Pruzhinskaya, A. D. Lavrukhina, E. Russeil, E. Gangler, E. E. O. Ishida, V. S. Korolev, K. L. Malanchev, A. A. Volnova, S. Sreejith (The SNAD team)

In the task of anomaly detection in modern time-domain photometric surveys, the primary goal is to identify astrophysically interesting, rare, and unusual objects among a large volume of data. Unfortunately, artifacts -- such as plane or satellite tracks, bad columns on CCDs, and ghosts -- often constitute significant contaminants in results from anomaly detection analysis. In such contexts, the Active Anomaly Discovery (AAD) algorithm allows tailoring the output of anomaly detection pipelines according to what the expert judges to be scientifically interesting. We demonstrate how the introduction real-bogus scores, obtained from a machine learning classifier, improves the results from AAD. Using labeled data from the SNAD ZTF knowledge database, we train four real-bogus classifiers: XGBoost, CatBoost, Random Forest, and Extremely Randomized Trees. All the models perform real-bogus classification with similar effectiveness, achieving ROC-AUC scores ranging from 0.93 to 0.95. Consequently, we select the Random Forest model as the main model due to its simplicity and interpretability. The Random Forest classifier is applied to 67 million light curves from ZTF DR17. The output real-bogus score is used as an additional feature for two anomaly detection algorithms: static Isolation Forest and AAD. While results from Isolation Forest remained unchanged, the number of artifacts detected by the active approach decreases significantly with the inclusion of the real-bogus score, from 27 to 3 out of 100. We conclude that incorporating the real-bogus classifier result as an additional feature in the active anomaly detection pipeline significantly reduces the number of artifacts in the outputs, thereby increasing the incidence of astrophysically interesting objects presented to human experts.

David L. Moutard, Renee M. Ludlam, Edward M. Cackett, Javier A. García, Jon M. Miller, Dan R. Wilkins

In this study, we examine 51 archival NICER observations and 6 archival NuSTAR observations of the neutron star (NS) ultra-compact X-ray binary (UCXB) 4U 0614+091, which span over 5 years. The source displays persistent reflection features, so we use a reflection model designed for UCXBs, with overabundant carbon and oxygen ({\sc xillverCO}) to study how various components of the system vary over time. The flux of this source is known to vary quasi-periodically on a timescale of a few days, so we study how the various model components change as the overall flux varies. The flux of most components scales linearly with the overall flux, while the power law, representing coronal emission, is anti-correlated as expected. This is consistent with previous studies of the source. We also find that during observations of the high-soft state, the disk emissivity profile as a function of radius becomes steeper. We interpret this as the corona receding to be closer to the compact object during these states, at which point the assumed power law illumination of {\sc xillverCO} may be inadequate to describe the illumination of the disk.

T. Becker, F.C. Onyeagusi, J. Teiser, T. Jardiel, M. Peiteado, O. Munoz, J. Martikainen, J.C. Gomez Martin, J. Merrison, G. Wurm

Within the RoadMap project we investigated the microphysical aspects of particle collisions during saltation on the Martian surface in laboratory experiments. Following the size distribution of ejected particles, their aerodynamic properties and aggregation status upon ejection, we now focus on the electrification and charge distribution of ejected particles. We analyzed rebound and ejection trajectories of grains in a vacuum setup with a strong electric field of 100 kV/m and deduced particle charges from their acceleration. The ejected particles have sizes of about 10 to 100 microns. They carry charges up to $10^5$ e or charge densities up to $> 10^7$ e/mm$^2$. Within the given size range, we find a small bias towards positive charges.

Light pollution is a growing environmental issue that affects astronomy, ecosystems, human health. To address this, we introduce the Free Dark Sky Meter (FreeDSM), an affordable IoT-based photometer designed for continuous light pollution monitoring. FreeDSM uses an ESP32 microcontroller with integrated sensors for light, temperature, and humidity, and operates on an open-source platform. Data from multiple devices are centralized and processed using the Gambons model, which leverages Gaia satellite data for accurate real-time assessments of natural light levels. This project is part of the Gaia4Sustainability initiative.

J. R. Barnes, S. V. Jeffers, C. A. Haswell, M. Damasso, F. Del Sordo, F. Liebing, M. Perger, G. Anglada-Escudé

The radial velocity (RV) method of exoplanet detection requires mitigation of nuisance signals arising from stellar activity. Using analytic cool and facular spot models, we explore the use of central line moments (CLMs) for recovering and monitoring rotation induced RV variability. Different spot distribution patterns, photosphere-spot contrast ratios and the presence or absence of the convective blueshift lead to differences in CLM signals between M dwarfs and G dwarfs. Harmonics of the rotation period are often recovered with the highest power in standard periodogram analyses. By contrast, we show the true stellar rotation may be more reliably recovered with string length minimisation. For solar minimum activity levels, recovery of the stellar rotation signal from CLMs is found to require unfeasibly high signal-to-noise observations. The stellar rotation period can be recovered at solar maximum activity levels from CLMs for reasonable cross-correlation function (CCF) signal-to-noise ratios $> 1000 - 5000$. The CLMs can be used to recover and monitor stellar activity through their mutual correlations and correlations with RV and bisector inverse span. The skewness of a CCF, a measure of asymmetry, is described by the third CLM, $M_3$. Our noise-free simulations indicate the linear RV vs $M_3$ correlation is up to 10 per cent higher than the RV vs bisector inverse span correlation. We find a corresponding $\sim 5$ per cent increase in linear correlation for CARMENES observations of the M star, AU Mic. We also assess the effectiveness of the time derivative of the second CLM, $M_2$, for monitoring stellar activity.

Nikolaos Mandarakas, Konstantinos Tassis, Raphael Skalidis

The Serkowski relation is the cornerstone of studies of starlight polarization as a function of wavelength. Although empirical, its extensive use since its inception to describe polarization induced by interstellar dust has elevated the relation to the status of an indisputable "law", serving as the benchmark for validating interstellar dust grain models. We revisit the effects of the 3D structure of the interstellar medium (ISM) on the wavelength dependence of interstellar polarization. We use analytical models to show how the wavelength dependence of both the polarization fraction and direction is affected by the presence of multiple clouds along the line of sight (LOS), accounting for recent developments in dust distribution modelling and utilizing an expanded archive of stellar polarization measurements. We highlight concrete examples of stars whose polarization profiles are severely affected by LOS variations of the dust grain and magnetic field properties, and we provide a recipe to accurately fit multiple cloud Serkowski models to such cases. We present, for the first time, compelling observational evidence that the 3D structure of the magnetized ISM often results to the violation of the Serkowski relation. We show that 3D effects impact interstellar cloud parameters derived from Serkowski fits. In particular, the dust size distribution in single - cloud sightlines may differ from analyses that ignore 3D effects, with important implications for dust modelling in the Galaxy. Our results suggest that multiband stellar polarization measurements offer an independent probe of the LOS variations of the magnetic field, constituting a valuable new tool for the 3D cartography of the ISM. We caution that, unless 3D effects are explicitly accounted for, a poor fit to the Serkowski relation does not, by itself, constitute conclusive evidence that a star is intrinsically polarized.

Understanding the morphology of galaxies is a critical aspect of astrophysics research, providing insight into the formation, evolution, and physical properties of these vast cosmic structures. Various observational and computational methods have been developed to quantify galaxy morphology, and with the advent of large galaxy simulations, the need for automated and effective classification methods has become increasingly important. This paper investigates the use of Principal Component Analysis (PCA) as an interpretable dimensionality reduction algorithm for galaxy morphology using the IllustrisTNG cosmological simulation dataset with the aim of developing a generative model for galaxies. We first generate a dataset of 2D images and 3D cubes of galaxies from the IllustrisTNG simulation, focusing on the mass, metallicity, and stellar age distribution of each galaxy. PCA is then applied to this data, transforming it into a lower-dimensional image space, where closeness of data points corresponds to morphological similarity. We find that PCA can effectively capture the key morphological features of galaxies, with a significant proportion of the variance in the data being explained by a small number of components. With our method we achieve a dimensionality reduction by a factor of $\sim200$ for 2D images and $\sim3650$ for 3D cubes at a reconstruction accuracy below five percent. Our results illustrate the potential of PCA in compressing large cosmological simulations into an interpretable generative model for galaxies that can easily be used in various downstream tasks such as galaxy classification and analysis.

Ana Contreras-Santos, Fernando Buitrago, Alexander Knebe, Elena Rasia, Frazer R. Pearce, Weiguang Cui, Chris Power, Jordan Winstanley

The observation of a massive galaxy with an extremely low dark matter content (i.e. NGC 1277) has posed questions about how such objects form and evolve in a hierarchical universe. We here report on the finding of several massive, dark matter-deficient galaxies in a set of 324 galaxy clusters theoretically modelled by means of full-physics hydrodynamical simulations. We first focus on two example galaxies selected amongst the most massive and dark matter-deficient ones. By tracing the evolution of these galaxies, we find that their lack of dark matter is a result of multiple pericentre passages. While orbiting their host halo, tidal interactions gradually strip away dark matter while preserving the stellar component. A statistical analysis of all massive satellite galaxies in the simulated clusters shows that the stellar-to-total mass ratio today is strongly influenced by the number of orbits and the distance at pericentres. Galaxies with more orbits and closer pericentres are more dark matter-deficient. Additionally, we find that massive, dark matter-deficient galaxies at the present day are either the remnants of very massive galaxies at infall or former central galaxies of infalling groups. We conclude that such massive yet dark matter-deficient galaxies exist and are natural by-products of typical cluster galaxy evolution, with no specific requirement for an exotic formation scenario.

Thanawuth Thanathibodee, Connor Robinson, Nuria Calvet, Catherine Espaillat, Caeley Pittman, Nicole Arulanantham, Kevin France, Hans Moritz Günther, Seok-Jun Chang, P. Christian Schneider

The C IV doublet in the UV has long been associated with accretion in T Tauri stars. However, it is still unclear where and how the lines are formed. Here, we present a new C IV line model based on the currently available accretion shock and accretion flow models. We assume axisymmetric, dipolar accretion flows with different energy fluxes and calculate the properties of the accretion shock. We use Cloudy to obtain the carbon level populations and calculate the emerging line profiles assuming a plane-parallel geometry near the shock. Our model generally reproduces the intensities and shapes of the C IV emission lines observed from T Tauri stars. We find that the narrow component is optically thin and originates in the postshock, while the broad component is optically thick and emerges from the preshock. We apply our model to seven T Tauri stars from the Hubble Ultraviolet Legacy Library of Young Stars as Essential Standards Director's Discretionary program (ULLYSES), for which consistently determined accretion shock properties are available. We can reproduce the observations of four stars, finding that the accretion flows are carbon-depleted. We also find that the chromospheric emission accounts for less than 10 percent of the observed C IV line flux in accreting T Tauri stars. This work paves the way toward a better understanding of hot line formation and provides a potential probe of abundances in the inner disk.

Vincent Eberle, Matteo Guardiani, Margret Westerkamp, Philipp Frank, Julian Rüstig, Julia Stadler, Torsten A. Enßlin

Many advances in astronomy and astrophysics originate from accurate images of the sky emission across multiple wavelengths. This often requires reconstructing spatially and spectrally correlated signals detected from multiple instruments. To facilitate the high-fidelity imaging of these signals, we introduce the universal Bayesian imaging kit (UBIK). Specifically, we present J-UBIK, a flexible and modular implementation leveraging the JAX-accelerated this http URL software as its backend. J-UBIK streamlines the implementation of the key Bayesian inference components, providing for all the necessary steps of Bayesian imaging pipelines. First, it provides adaptable prior models for different sky realizations. Second, it includes likelihood models tailored to specific instruments. So far, the package includes three instruments: Chandra and eROSITA for X-ray observations, and the James Webb Space Telescope (JWST) for the near- and mid-infrared. The aim is to expand this set in the future. Third, these models can be integrated with various inference and optimization schemes, such as maximum a posteriori estimation and variational inference. Explicit demos show how to integrate the individual modules into a full analysis pipeline. Overall, J-UBIK enables efficient generation of high-fidelity images via Bayesian pipelines that can be tailored to specific research objectives.

Seamus L. Anderson, Gretchen K. Benedix, Belinda Godel, Romain M. L. Alosius, Daniela Krietsch, Henner Busemann, Colin Maden, Jon M. Friedrich, Lara R. McMonigal, Kees C. Welten, Marc W. Caffee, Robert J. Macke, Seán Cadogan, Dominic H. Ryan, Fred Jourdan, Celia Mayers, Matthias Laubenstein, Richard C. Greenwood, Malcom P. Roberts, Hadrien A. R. Devillepoix, Eleanor K. Sansom, Martin C. Towner, Martin Cupák, Philip A. Bland, Lucy V. Forman, John H. Fairweather, Ashley F. Rogers, Nicholas E. Timms

Over the Nullarbor Plain in South Australia, the Desert Fireball Network detected a fireball on the night of 1 June 2019 (7:30 pm local time), and six weeks later recovered a single meteorite (42 g) named Arpu Kuilpu. This meteorite was then distributed to a consortium of collaborating institutions to be measured and analyzed by a number of methodologies including: SEM-EDS, EPMA, ICP-MS, gamma-ray spectrometry, ideal gas pycnometry, magnetic susceptibility measurement, {\mu}CT, optical microscopy, and accelerator and noble gas mass spectrometry techniques. These analyses revealed that Arpu Kuilpu is an unbrecciated H5 ordinary chondrite, with minimal weathering (W0-1) and minimal shock (S2). The olivine and pyroxene mineral compositions (in mol%) are Fa: 19.2 +- 0.2, and Fs: 16.8 +- 0.2, further supporting the H5 type and class. The measured oxygen isotopes are also consistent with an H chondrite ({\delta}17O = 2.904 +- 0.177; {\delta}18O = 4.163 +- 0.336; {\Delta}17O = 0.740 +- 0.002). Ideal gas pycnometry measured bulk and grain densities of 3.66 +- 0.02 and 3.77 +- 0.02 g cm-3, respectively, yielding a porosity of 3.0 % +- 0.7. The magnetic susceptibility of this meteorite is log X = 5.16 +- 0.08. The most recent impact-related heating event experienced by Arpu Kuilpu was measured by 40Ar/39Ar chronology to be 4467 +- 16 Ma, while the cosmic ray exposure age is estimated to be between 6-8 Ma. The noble gas isotopes, radionuclides, and fireball observations all indicate that Arpu Kuilpu's meteoroid was quite small (maximum radius of 10 cm, though more likely between 1-5 cm). Although this meteorite is a rather ordinary ordinary chondrite, its prior orbit resembled that of a Jupiter Family Comet (JFC) further lending support to the assertion that many cm- to m-sized objects on JFC orbits are asteroidal rather than cometary in origin.

Soumya Shreeram, Johan Comparat, Andrea Merloni, Yi Zhang, Gabriele Ponti, Kirpal Nandra, John ZuHone, Ilaria Marini, Stephan Vladutescu-Zopp, Paola Popesso, Ruediger Pakmor, Riccardo Seppi, Celine Peroux, Daniele Sorini

The hot phase of the circumgalactic medium (CGM) allows us to probe the inflow and outflow of gas within a galaxy, which is responsible for dictating the evolution of the galaxy. Studying the hot CGM sheds light on a better understanding of gas physics, which is crucial to inform and constrain simulation models. With the recent advances in observational measurements probing the hot CGM in X-rays and tSZ, we have a new avenue for widening our knowledge of gas physics and feedback by exploiting the information from current/future observations. In this paper, we use the TNG300 hydrodynamical simulations to build a fully self-consistent forward model for the hot CGM. We construct a lightcone and generate mock X-ray observations. We quantify the projection effects, namely the locally correlated large-scale structure in X-rays and the effect due to satellite galaxies misclassified as centrals which affects the measured hot CGM galactocentric profiles in stacking experiments. We present an analytical model that describes the intrinsic X-ray surface brightness profile across the stellar and halo mass bins. The increasing stellar mass bins result in decreasing values of $\beta$, the exponent quantifying the slope of the intrinsic galactocentric profiles. We carry forward the current state-of-the-art by also showing the impact of the locally correlated environment on the measured X-ray surface brightness profiles. We also present, for the first time, the effect of misclassified centrals in stacking experiments for three stellar mass bins: $10^{10.5-11}\ M_\odot$, $10^{11-11.2}\ M_\odot$, and $10^{11.2-11.5}\ M_\odot$. We find that the contaminating effect of the misclassified centrals on the stacked profiles increases when the stellar mass decreases.

We focus on the inflationary predictions of $\beta$-exponential potential models, in which the inflaton is a representation of the field delineating the size of extra-dimension. Since it offers a well-motivated starting point for the study of physics at very high energies, we incorporate an $R^2$ term in the Palatini gravity. In addition, afterward the inflation, the inflaton oscillates about the minimum of the inflation potential, and reheats the universe. This occurs during the reheating phase, at which the inflaton decays into the standard model particles, which fill the universe. We extend our examination by considering the reheating effects on inflationary observables by employing the different scenarios of the reheat temperature. Supposing the standard thermal history after inflation, we display the inflationary predictions, $n_s, r, \mathrm{d}n_s/\mathrm{d}\ln k$ of $\beta$-exponential potential with minimal coupling in Palatini $R^2$ gravity. Also, different kinds of constraints from a variety of observations, such as BICEP/Keck, Planck 2018, as well as future possible detectable sensitivities that might be reached by CMB experiments: CMB-S4 and LiteBIRD are taken into account in this work. We indicate that our results are consistent with both the latest data and the future sensitivity forecasts of LiteBIRD/Planck and CMB-S4. Finally, the results in this study highlight the viability of our model even in the case of the existence of more stringent constraints expected from future achievable confidence level limits.

Aneta Siemiginowska, Douglas Burke, Hans Moritz Günther, Nicholas P. Lee, Warren McLaughlin, David A. Principe, Harlan Cheer, Antonella Fruscione, Omar Laurino, Jonathan McDowell, Marie Terrell

We present an overview of Sherpa, an open source Python project, and discuss its development history, broad design concepts and capabilities. Sherpa contains powerful tools for combining parametric models into complex expressions that can be fit to data using a variety of statistics and optimization methods. It is easily extensible to include user-defined models, statistics, and optimization methods. It provides a high-level User Interface for interactive data-analysis, such as within a Jupyter notebook, and it can also be used as a library component, providing fitting and modeling capabilities to an application. We include a few examples of Sherpa applications to multiwavelength astronomical data. The code is available GitHub: this https URL

M. Papoutsis, I. E. Papadakis, C. Panagiotou, M. Dovčiak, E. Kammoun

Active galactic nuclei (AGNs) are known to be variable across all wavelengths. Significant observational efforts have been invested in the last decade in studying their ultraviolet (UV) and optical variability. Long and densely sampled, multi-wavelength monitoring campaigns of numerous Seyfert galaxies have been conducted with the aim of determining the X-ray/UV/optical continuum time lags. Time-lag studies can be used to constrain theoretical models. The observed time lags can be explained by thermal reprocessing of the X-rays illuminating the accretion disc (known as the X-ray reverberation model). However, the observed light curves contain more information that can be used to further constrain physical models. Our primary objective is to investigate whether, in addition to time lags, the X-ray reverberation model can also explain the UV/optical variability amplitude of nearby Seyferts. To do this, we measured the excess variance of four sources (namely Mrk 509, NGC 4151, NGC 2617, and Mrk 142) as a function of wavelength using data from archival long, multi-wavelength campaigns with Swift, and ground-based telescopes. We also computed the model excess variance in the case of the X-ray reverberation model by determining the disc's transfer function and assuming a bending power law for the X-ray power spectrum. We tested the validity of the model by comparing the measured and model variances for a range of accretion rates and X-ray source heights. We conclude that the X-ray thermal reverberation model can fit both the continuum, UV/optical time lags, as well as the variance in these AGNs, for the same physical parameters. Our results suggest that the accretion disc is constant and that all the observed UV/optical variations, on timescales of days and up to a few weeks, can be fully explained by the variable X-rays as they illuminate the accretion disc.

N. Raffuzzi, M. Lembo, S. Giardiello, M. Gerbino, M. Lattanzi, P. Natoli, L. Pagano

V-mode polarization of the cosmic microwave background is expected to be vanishingly small in the $\Lambda$CDM model and, hence, usually ignored. Nonetheless, several astrophysical effects, as well as beyond standard model physics could produce it at a detectable level. A realistic half-wave plate - an optical element commonly used in CMB experiments to modulate the polarized signal - can provide sensitivity to V modes without significantly spoiling that to linear polarization. We assess this sensitivity for some new-generation CMB experiments, such as the LiteBIRD satellite, the ground-based Simons Observatory and a CMB-S4-like experiment. We forecast the efficiency of these experiments to constrain the phenomenology of certain classes of BSM models inducing mixing of linear polarization states and generation of V modes in the CMB. We find that new-generation experiments can improve current limits by 1-to-3 orders of magnitude, depending on the data combination. The inclusion of V-mode information dramatically boosts the sensitivity to these BSM models.

Karl D. Gordon, G. C. Sloan, Macarena Garcia Marin, Mattia Libralato, George Rieke, Jonathan A. Aguilar, Ralph Bohlin, Misty Cracraft, Marjorie Decleir, Andras Gaspar, David R. Law, Alberto Noriega-Crespo, Michael Regan

The absolute flux calibration of the Mid-Infrared Instrument Imaging and Coronagraphy is based on observations of multiple stars taken during the first 2.5 years of JWST operations. The observations were designed to ensure that the flux calibration is valid for a range of flux densities, different subarrays, and different types of stars. The flux calibration was measured by combining observed aperture photometry corrected to infinite aperture with predictions based on previous observations and models of stellar atmospheres. A subset of these observations were combined with model point-spread-functions to measure the corrections to infinite aperture. Variations in the calibration factor with time, flux density, background level, type of star, subarray, integration time, rate, and well depth were investigated, and the only significant variations were with time and subarray. Observations of the same star taken approximately every month revealed a modest time-dependent response loss seen mainly at the longest wavelengths. This loss is well characterized by a decaying exponential with a time constant of ~200 days. After correcting for the response loss, the band-dependent scatter around the corrected average (aka repeatability) was found to range from 0.1 to 1.2%. Signals in observations taken with different subarrays can be lower by up to 3.4% compared to FULL frame. After correcting for the time and subarray dependencies, the scatter in the calibration factors measured for individual stars ranges from 1 to 4% depending on the band. The formal uncertainties on the flux calibration averaged for all observations are 0.3 to 1.0%, with longer-wavelength bands generally having larger uncertainties.

The multi-wavelength data from the Solar Dynamics Observatory (SDO) is extensively used in studying the physics of the Sun and its atmosphere. In this study, we estimate the formation heights of low-corona and chromospheric channels of the Atmospheric Imaging Assembly (AIA) over the atmospheres of sunspot umbrae during the quiet condition period within 20 different active regions. The upward propagating slow magnetoacoustic waves (slow MAWs) of 3-min period, which are perpetually present in sunspots, are utilized for this purpose. Employing a cross-correlation technique, the most frequent time lag between different channel pairs is measured. By combining this information with the local sound speed obtained from the characteristic formation temperatures of individual channels, we estimate the respective formation heights. The median values of formation heights obtained across all active regions in our sample are 356, 368, 858, 1180, and 1470 km, respectively, for the AIA 1600 Å, 1700 Å, 304 Å, 131 Å, and 171 Å channels. The corresponding ranges in the formation heights are 247 $\--$ 453, 260 $\--$ 468, 575 $\--$ 1155, 709 $\--$ 1937, and 909 $\--$ 2585 km, respectively. These values are measured with respect to the HMI continuum. We find the formation height of UV channels is quite stable (between 250 $\--$ 500 km) and displays only a marginal difference between the AIA 1600 Å and 1700 Å during quiet conditions. On the other hand, the formation height of coronal channels is quite variable.

Rogerio Deienno, Larry Denneau, David Nesvorný, David Vokrouhlický, William F. Bottke, Robert Jedicke, Shantanu Naidu, Steven R. Chesley, Davide Farnocchia, Paul W. Chodas

This work is dedicated to debias the Near-Earth Objects (NEO) population based on observations from the Asteroid Terrestrial-impact Last Alert System (ATLAS) telescopes. We have applied similar methods used to develop the recently released NEO model generator (NEOMOD), once debiasing the NEO population using data from Catalina Sky Survey (CSS) G96 telescope. ATLAS is composed of four different telescopes. We first analyzed observational data from each of all four telescopes separately and later combined them. Our results highlight main differences between CSS and ATLAS, e.g., sky coverage and survey power at debiasing the NEO population. ATLAS has a much larger sky coverage than CSS, allowing it to find bright NEOs that would be constantly "hiding" from CSS. Consequently, ATLAS is more powerful than CSS at debiasing the NEO population for H $\lesssim$ 19. With its intrinsically greater sensitivity and emphasis on observing near opposition, CSS excels in the debiasing of smaller objects. ATLAS, as an all sky survey designed to find imminent hazardous objects, necessarily spends a significant fraction of time looking at places on the sky where objects do not appear, reducing its power for debiasing the population of small objects. We estimate a NEO population completeness of $\approx$ 88%$^{+3\%}_{-2\%}$ for H $<$ 17.75 and $\approx$ 36%$^{+1\%}_{-1\%}$ for H $<$ 22.25. Those numbers are similar to previous estimates (within error bars for H $<$ 17.75) from CSS, yet, around 3% and 8% smaller at their face values, respectively. We also confirm previous finding that the $\nu_6$ secular resonance is the main source of small and faint NEOs at H = 28, whereas the 3:1 mean motion resonance with Jupiter dominates for larger and brighter NEOs at H = 15.

The formation of planetary systems has historically been considered in isolation, decoupled from processes on galactic scales. Recent findings employing data from ESA's Gaia mission challenge this narrative, identifying trends in planet occurrence with galactic kinematics and stellar age. The findings indicate changes in planet occurrence over and above the predicted changes from metallicity variation within the Milky Way, so that changes to stellar metallicity alone (long understood to be deterministic in planet outcomes) cannot explain the trends entirely. The scope of potential factors influencing planet formation has grown progressively wider, with accompanying theoretical support for galactic-scale influences upon planet formation. In this manuscript, we investigate specifically how changes to the rate of Systems of Tightly-packed Inner Planets (STIPs) could manifest as a trend in planet occurrence with galactic height. We focus our study upon M dwarf planetary systems for two reasons: first, they host STIPs at high rates, and secondly, their longevity makes them useful probes for kinematic trends over Gyr. We consider two models for a varying STIP rate: one in which STIP likelihood is determined by stellar age alone, irrespective of galactic time, and another in which the STIP likelihood suddenly increased in recent galactic history. Both models, which impose a higher STIP likelihood among younger stars, produce a negative gradient in planet occurrence with increasing height from the galactic midplane. We find that a step function model in which STIP likelihood increased by a factor of several ~a few Gyr ago resembles an observed trend among FGK dwarfs. We consider plausible physical mechanisms that could mimic the hypothesized model, given known links between STIP occurrence and other stellar and planetary properties.

Olivier Gilbert, John J. Ruan, Michael Eracleous, Daryl Haggard, Jessie C. Runnoe

The physical processes that produce X-ray Quasi-Periodic Eruptions (QPEs) recently discovered from the nuclei of several low-redshift galaxies are mysterious. Several pieces of observational evidence strongly suggest a link between QPEs and Tidal Disruption Events (TDE). Previous studies also reveal that the morphologies of TDE host galaxies are highly concentrated, with high Sersic indicies, bulge-to-total light (B/T) ratios, and stellar surface mass densities relative to the broader galaxy population. We use these distinctive properties to test the link between QPEs and TDEs, by comparing these parameters of QPE host galaxies to TDE host galaxies. We employ archival Legacy Survey images of a sample of 9 QPE host galaxies and a sample of 13 TDE host galaxies, and model their surface brightness profiles. We show that QPE host galaxies have high Sersic indices of ~3, high B/T ratios of ~0.5, and high surface mass densities of ~10^10 Msun kpc^-2. These properties are similar to TDE host galaxies, but are in strong contrast to a mass- and redshift-matched control sample of galaxies. We also find tentative evidence that the central black holes in both QPE and TDE host galaxies are undermassive relative to their stellar mass. The morphological similarities between QPE and TDE host galaxies at the population level add to the mounting evidence of a physical link between these phenomena, and favor QPE models that also invoke TDEs.

Continuous wavefront sensing benefits space observatories in on-orbit optical performance maintenance. To measure the phase of a wavefront, phase retrieval is an attractive technique as it uses multiple point spread function (PSF) images that are acquired by the telescope itself without extra metrology systems nor complicated calibration. The focus diverse phase retrieval utilizes PSFs from predetermined defocused positions to enhance the dynamic range of the algorithm. We describe an updated visible light active optics testbed with the addition of a linear motorized focus stage. The performance of the phase retrieval algorithm in broadband is tested under various cases. While broadband pass filters have advantages in higher signal-to-noise ratio (SNR), the performance of phase retrieval can be restricted due to blurred image caused by diffraction and increased computing cost. We used multiple bandpass filters (10 nm, 88 nm, and 150 nm) and investigated effects of bandwidth on the accuracy and required image acquisition conditions such as SNR, reaching accuracies below 20 nm RMS wavefront error at the widest bandwidth. We also investigated the dynamic range of the phase retrieval algorithm depending on the bandwidth and required amount of defocus to expand dynamic range. Finally, we simulated the continuous wavefront sensing and correction loop with a range of statistically generated representative telescope disturbance time series to test for edge cases.

Patrick Chi-Kit Cheong, Antonios Tsokaros, Milton Ruiz, Fabrizio Venturi, Juno Chun Lung Chan, Anson Ka Long Yip, Koji Uryu

We present the first general-relativistic resistive magnetohydrodynamics simulations of self-consistent, rotating neutron stars with mixed poloidal and toroidal magnetic fields. Specifically, we investigate the role of resistivity in the dynamical evolution of neutron stars over a period of up to 100 ms and its effects on their quasi-equilibrium configurations. Our results demonstrate that resistivity can significantly influence the development of magnetohydrodynamic instabilities, resulting in markedly different magnetic field geometries. Additionally, resistivity suppresses the growth of these instabilities, leading to a reduction in the amplitude of emitted gravitational waves. Despite the variations in magnetic field geometries, the ratio of poloidal to toroidal field energies remains consistently 9:1 throughout the simulations, for the models we investigated.

Samuel Goldstein, Fiona McCarthy, Cristina Mondino, J. Colin Hill, Junwu Huang, Matthew C. Johnson

The resonant conversion of cosmic microwave background (CMB) photons into axions within large-scale structure induces an anisotropic spectral distortion in CMB temperature maps. Applying state-of-the-art foreground cleaning techniques to $\textit{Planck}$ CMB observations, we construct maps of axion-induced "patchy screening" of the CMB. We cross-correlate these maps with data from the $\textit{unWISE}$ galaxy survey and find no evidence of axions. We constrain the axion-photon coupling, $g_{a\gamma\gamma} \lesssim 2 \times 10^{-12}~{\rm GeV}^{-1}$, at the 95% confidence level for axion masses in the range $10^{-13}~{\rm eV} \lesssim m_a \lesssim 10^{-12}~{\rm eV}$. These constraints are competitive with the tightest astrophysical axion limits in this mass range and are inferred from robust population-level statistics, which makes them complementary to existing searches that rely on modeling of individual systems.

A. Castro-González, V. Bourrier, J. Lillo-Box, J.-B. Delisle, D. J. Armstrong, D. Barrado, A. C. M. Correia

Atmospheric and dynamical processes are thought to play a major role in shaping the distribution of close-in exoplanets. A striking feature of such distribution is the Neptunian desert, a dearth of Neptunes on the shortest-period orbits. We aimed to define the boundaries of the Neptunian desert and study its transition into the savanna, a moderately populated region at larger orbital distances. We built a sample of planets and candidates based on the Kepler DR25 catalogue and weighed it according to the transit and detection probabilities. We delimited the Neptunian desert as the close-in region of the period-radius space with no planets at a 3$\sigma$ level, and provide the community with simple, ready-to-use approximate boundaries. We identified an overdensity of planets separating the Neptunian desert from the savanna (3.2 days $ \lessapprox P_{\rm orb}$ $\lessapprox$ 5.7 days) that stands out at a 4.7$\sigma$ level above the desert and at a 3.5$\sigma$ level above the savanna, which we propose to call the Neptunian ridge. The period range of the ridge matches that of the hot Jupiter pileup ($\simeq$3-5 days), which suggests that similar evolutionary processes might act on both populations. We find that the occurrence fraction between the pileup and warm Jupiters is about twice that between the Neptunian ridge and savanna. Our revised landscape supports a previous hypothesis that a fraction of Neptunes were brought to the edge of the desert (i.e. the newly identified ridge) through high-eccentricity tidal migration (HEM) late in their life, surviving the evaporation that eroded Neptunes having arrived earlier in the desert. The ridge thus appears as a true physical feature illustrating the interplay between photoevaporation and HEM, providing further evidence of their role in shaping the distribution of close-in Neptunes.

Mathias Lipka, Jens Thomas, Roberto Saglia, Ralf Bender, Maximilian Fabricius, Gary J. Hill, Matthias Kluge, Martin Landriau, Ximena Mazzalay, Eva Noyola, Taniya Parikh, Jan Snigula

We analyse the stellar structure of a sample of dwarf ellipticals (dE) inhabiting various environments within the Virgo cluster. Integral-field observations with a high spectral resolution allow us to robustly determine their low velocity dispersions ($\sim25$ km s$^{-1}$) and higher-order kinematic moments out to the half-light radius. We find the dEs exhibit a diversity in ages with the younger dEs being less enhanced than the older, suggesting a complex star formation history for those dEs that recently entered Virgo while others have been quenched shortly after reionization. Orbit-superposition modeling allowed us to recover viewing angles, stellar mass-to-light ratios (with gradients), as well as the intrinsic orbit structure. We find that the angular momentum of the dEs is strongly suppressed compared to ordinary early-type galaxies and correlates with the environment. Flattened dEs are so because of a suppressed kinetic energy perpendicular to their equatorial plane. Combining population and dynamical modeling results, we find an age-dependent stellar initial mass function (IMF) or, alternatively, evidence for a more extended star formation history for those galaxies that have had higher initial mass and/or inhabited lower density environments. dEs appear to have a spatially homogeneous stellar structure but the state they were `frozen' in as they stopped forming stars varies dramatically according to their initial conditions.