Alpha-proton differential flow ($V_{\alpha p}$) of coronal mass ejections (CMEs) and solar wind from the Sun to 1 au and beyond could influence the instantaneous correspondence of absolute abundances of alpha particles (He$^{2+}$/H$^{+}$) between solar corona and interplanetary space as the abundance of a coronal source can vary with time. Previous studies based on Ulysses and Helios showed that $V_{\alpha p}$ is negligible within CMEs from 5 to 0.3 au, similar to slow solar wind ($<$ 400 km s$^{-1}$). However, recent new observations using Parker Solar Probe (PSP) revealed that the $V_{\alpha p}$ of slow wind increases to $\sim$60 km s$^{-1}$ inside 0.1 au. It is significant to answer whether the $V_{\alpha p}$ of CMEs exhibits the similar behavior near the Sun. In this Letter, we report the $V_{\alpha p}$ of a CME measured by PSP at $\sim$15 $R_\odot$ for the first time, which demonstrates that the $V_{\alpha p}$ of CMEs is obvious and complex inside 0.1 au while keeps lower than the local Alfvén speed. A very interesting point is that the same one CME duration can be divided into A and B intervals clearly with Coulomb number below and beyond 0.5, respectively. The means of $V_{\alpha p}$ and alpha-to-proton temperature ratios of interval A (B) is 96.52 (21.96) km s$^{-1}$ and 7.65 (2.23), respectively. This directly illustrates that Coulomb collisions play an important role in reducing the non-equilibrium features of CMEs. Our study indicates that the absolute elemental abundances of CMEs also might vary during their propagation.
Fast radio bursts (FRBs) are enigmatic high-energy events with unknown origins, which are observationally divided into two categories, i.e., repeaters and non-repeaters. However, there are potentially a number of non-repeaters that may be misclassified, as repeating bursts are missed due to the limited sensitivity and observation periods, thus misleading the investigation of their physical properties. In this work, we propose a repeater identification method based on the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm and apply the classification to the first Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) catalog. We find that the spectral morphology parameters, specifically spectral running ($r$), represent the key features for identifying repeaters from the non-repeaters. Also, the results suggest that repeaters are more biased towards narrowband emission, whereas non-repeaters are inclined toward broadband emission. We provide a list of 163 repeater candidates, with $5$ of which are confirmed with an updated repeater catalog from CHIME/FRB. Our findings help to the understanding of the various properties underlying repeaters and non-repeaters, as well as guidelines for future FRB detection and categorization.