We explore the physical properties of five massive quiescent galaxies at $z\sim2.5$, revealing the presence of non-negligible dust reservoirs. JWST NIRSpec observations were obtained for each target, finding no significant line emission; multiple star formation tracers independently place upper limits between $0.1-10~M_\odot / \mathrm{yr}$. Spectral energy distribution modeling with Prospector infers stellar masses between $\log_{10}[M / M_\odot] \sim 10-11$ and stellar mass-weighted ages between $1-2$ Gyr. The inferred mass-weighted effective radii ($r_{eff}\sim 0.4-1.4$ kpc) and inner $1$ kpc stellar surface densities ($\log_{10}[\Sigma / M_\odot \mathrm{kpc}^2 ]\gtrsim 9$) are typical of quiescent galaxies at $z \gtrsim 2$. The galaxies display negative color gradients (redder core and bluer outskirts); for one galaxy, this effect results from a dusty core, while for the others it may be evidence of an "inside-out" growth process. Unlike local quiescent galaxies, we identify significant reddening in these typical cosmic noon passive galaxies; all but one require $A_V \gtrsim 0.4$. This finding is in qualitative agreement with previous studies but our deep 20-band NIRCam imaging is able to significantly suppress the dust-age degeneracy and confidently determine that these galaxies are reddened. We speculate about the physical effects that may drive the decline in dust content in quiescent galaxies over cosmic time.
We study spherical accretion of magnetized plasma with low angular momentum onto a supermassive black hole, utilizing global General Relativistic Magnetohydrodynamic simulations. Black hole-driven feedback in the form of magnetic eruptions and jets triggers magnetized turbulence in the surrounding medium. We find that when the Bondi radius exceeds a certain value relative to the black hole's gravitational radius, this turbulence restricts the subsequent inflow of magnetic flux, strongly suppressing the strength of the jet. Consequently, magnetically arrested disks and powerful jets are not a generic outcome of accretion of magnetized plasma, even if there is an abundance of magnetic flux available in the system. However, if there is significant angular momentum in the inflowing gas, the eruption-driven turbulence is suppressed (sheared out), allowing for the presence of a powerful jet. Both the initially rotating and non-rotating flows go through periods of low and high gas angular momentum, showing that the angular momentum content of the inflowing gas is not just a feature of the ambient medium, but is strongly modified by the eruption and jet-driven black hole feedback. In the lower angular momentum states, our results predict that there should be dynamically strong magnetic fields on horizon scales, but no powerful jet; this state may be consistent with Sgr A* in the Galactic Center.
We present IR photometry and HST imaging and spectroscopy of Sab galaxy NGC 4826. Schwarzschild dynamical modeling is used to measure its central black hole mass $M$. Photometric decomposition is used to enable a comparison of $M$ to published scaling relations between black hole masses and properties of host bulges. This decomposition implies that NGC 4826 contains classical and pseudo bulges of approximately equal mass. The classical bulge has best-fit Sérsic index $n=3.27$. The pseudobulge is made up of three parts, an inner lens ($n=0.18$ at $r\lesssim4^{\prime\prime}$), an outer lens ($n=0.17$ at $r \lesssim 45^{\prime\prime}$), and a $n=0.58$ component required to match the surface brightness between the lens components. The total $V$-band luminosity of the galaxy is $M_{VT}=-21.07$, the ratio of classical bulge to total light is $B/T\simeq0.12$, and the ratio of pseudobulge to total light is $PB/T\simeq0.13$. The outer disk is exponential ($n=1.07$) and makes up $D/T=0.75$ of the light of the galaxy. Our best-fit Schwarzschild model has a black hole mass with $1\sigma$ uncertainties of $M=8.4^{+1.7}_{-0.6}\times10^6\ M_\odot$ and a stellar $K$-band mass-to-light ratio of $\Upsilon_K=0.46\pm0.03\ M_{\odot}\ \mathrm{L}_{\odot}^{-1}$ at the assumed distance of 7.27 Mpc. Our modeling is marginally consistent with $M=0$ at the $3\sigma$ limit. These best-fit parameters were calculated assuming the black hole is located where the velocity dispersion is largest; this is offset from the maximum surface brightness, probably because of dust absorption. The black hole mass -- one of the smallest measured by modeling stellar dynamics -- satisfies the well known correlations of $M$ with the $K$-band luminosity, stellar mass, and velocity dispersion of the classical bulge only in contrast to total (classical plus pseudo) bulge luminosity.
The data volumes generated by the WALLABY atomic Hydrogen (HI) survey using the Australiian Square Kilometre Array Pathfinder (ASKAP) necessitate greater automation and reliable automation in the task of source-finding and cataloguing. To this end, we introduce and explore a novel deep learning framework for detecting low Signal-to-Noise Ratio (SNR) HI sources in an automated fashion. Specfically, our proposed method provides an automated process for separating true HI detections from false positives when used in combination with the Source Finding Application (SoFiA) output candidate catalogues. Leveraging the spatial and depth capabilities of 3D Convolutional Neural Networks (CNNs), our method is specifically designed to recognise patterns and features in three-dimensional space, making it uniquely suited for rejecting false positive sources in low SNR scenarios generated by conventional linear methods. As a result, our approach is significantly more accurate in source detection and results in considerably fewer false detections compared to previous linear statistics-based source finding algorithms. Performance tests using mock galaxies injected into real ASKAP data cubes reveal our method's capability to achieve near-100% completeness and reliability at a relatively low integrated SNR~3-5. An at-scale version of this tool will greatly maximise the science output from the upcoming widefield HI surveys.
The IBEX-Lo instrument on the Interstellar Boundary Explorer (IBEX) mission observes primary and secondary interstellar helium in its 4 lowest energy steps. Observations of these helium populations have been systematically analyzed and compared to simulations using the analytic full integration of neutrals model (aFINM). A systematic difference is observed between the simulations and observations of secondary helium during solar cycle (SC) 24. We show that elastic scattering of primary helium by solar wind protons, which redistributes atoms from the core of the flux distribution, provides an explanation of the observed divergence from simulations. We verify that elastic scattering forms a halo in the wings of the primary He distribution in the spin-angle direction. Correcting the simulation for the effects of elastic scattering requires an increase of the estimated density of primary helium compared to previous estimates by Ulysses/GAS. Thus, based on our analysis of IBEX observations and $\chi ^2$ minimization of simulation data that include the effects of elastic scattering, any estimation of neutral interstellar helium density at 1 AU by direct detection of the peak flux of neutral helium needs to be adjusted by $~\sim$ 10%