Many science cases for wide-field time-domain surveys rely on accurate identification and characterization of the galaxies hosting transient and variable objects. In the era of the Legacy Survey of Space and Time (LSST) at the Vera C. Rubin Observatory the number of known transient and variable sources will grow by orders of magnitude, and many of these sources will be blended with their host galaxies and neighboring galaxies. A diverse range of applications - including the classification of nuclear and non-nuclear sources, identification of potential host galaxies, extraction of host galaxy SEDs without requiring a transient-free reference image, and combined analysis of photometry from multiple surveys - will benefit from a flexible framework to model time-domain imaging of transients. We describe a time-domain extension of the Scarlet2 scene modeling code for multi-epoch, multi-band, and multi-resolution imaging data to extract simultaneous transient and host galaxy models. Scarlet2 leverages the benefits of data-driven priors on galaxy morphology, is fully GPU compatible, and can jointly model multi-resolution data from ground and space-based surveys. We demonstrate the method on simulated LSST-like supernova imaging, low-resolution Zwicky Transient Facility imaging of tidal disruption events, and Hyper Suprime Cam imaging of variable AGN out to z = 4 in the COSMOS fields. We show that Scarlet2 models provide accurate transient and host galaxy models as well as accurate measurement of host-transient spatial offsets, and demonstrate future applications to the search for 'wandering' massive black holes.
We describe AthenaK: a new implementation of the Athena++ block-based adaptive mesh refinement (AMR) framework using the Kokkos programming model. Finite volume methods for Newtonian, special relativistic (SR), and general relativistic (GR) hydrodynamics and magnetohydrodynamics (MHD), and GR-radiation hydrodynamics and MHD, as well as a module for evolving Lagrangian tracer or charged test particles (e.g., cosmic rays) are implemented using the framework. In two companion papers we describe (1) a new solver for the Einstein equations based on the Z4c formalism and (2) a GRMHD solver in dynamical spacetimes also implemented using the framework, enabling new applications in numerical relativity. By adopting Kokkos, the code can be run on virtually any hardware, including CPUs, GPUs from multiple vendors, and emerging ARM processors. AthenaK shows excellent performance and weak scaling, achieving over one billion cell updates per second for hydrodynamics in three-dimensions on a single NVIDIA Grace Hopper processor and with a typical parallel efficiency of 80% on 65536 AMD GPUs on the OLCF Frontier system. Such performance portability enables AthenaK to leverage modern exascale computing systems for challenging applications in astrophysical fluid dynamics, numerical relativity, and multimessenger astrophysics.