We study the polarization of black hole jets on scales of $10-10^3\,GM/c^2$ and show that large spatial swings in the polarization occur at three characteristic distances from the black hole: the radius where the counter-jet dims, the radius where the magnetic field becomes azimuthally dominated (the light cylinder), and the radius where the plasma reaches its terminal Lorentz factor. To demonstrate the existence of these swings, we derive a correspondence between axisymmetric magnetohydrodynamic outflows and their force-free limits, which allows us to analytically compute the plasma kinematics and magnetic field structure of collimated, general relativistic jets. We then use this method to ray trace polarized images of black hole jets with a wide range of physical parameters, focusing on roughly face-on jets like that of M87. We show that the location of the polarization swings is strongly tied to the location of the light cylinder and thus to the black hole's spin, illustrating a new method of measuring spin from polarized images of the jet. This signature of black hole spin should be observable by future interferometric arrays like the (Next Generation) Event Horizon Telescope, which will be able to resolve the polarized emission of the jet down to the near-horizon region at high dynamic range.
Measurements of galaxy clustering are affected by RSD. Peculiar velocities, gravitational lensing, and other light-cone projection effects modify the observed redshifts, fluxes, and sky positions of distant light sources. We determine which of these effects leave a detectable imprint on several 2-point clustering statistics extracted from the EWSS on large scales. We generate 140 mock galaxy catalogues with the survey geometry and selection function of the EWSS and make use of the LIGER method to account for a variable number of relativistic RSD to linear order in the cosmological perturbations. We estimate different 2-point clustering statistics from the mocks and use the likelihood-ratio test to calculate the statistical significance with which the EWSS could reject the null hypothesis that certain relativistic projection effects can be neglected in the theoretical models. We find that the combined effects of lensing magnification and convergence imprint characteristic signatures on several clustering observables. Their S/N ranges between 2.5 and 6 (depending on the adopted summary statistic) for the highest-redshift galaxies in the EWSS. The corresponding feature due to the peculiar velocity of the Sun is measured with a S/N of order one or two. The $P_{\ell}(k)$ from the catalogues that include all relativistic effects reject the null hypothesis that RSD are only generated by the variation of the peculiar velocity along the line of sight with a significance of 2.9 standard deviations. As a byproduct of our study, we demonstrate that the mixing-matrix formalism to model finite-volume effects in the $P_{\ell}(k)$ can be robustly applied to surveys made of several disconnected patches. Our results indicate that relativistic RSD, the contribution from weak gravitational lensing in particular, cannot be disregarded when modelling 2-point clustering statistics extracted from the EWSS.
The MIRI-MRS instrument onboard JWST allows for probing the molecular gas composition at mid-IR wavelengths at unprecedented resolution and sensitivity. It is important to study these features in low-mass embedded protostellar systems since the formation of planets is thought to start in this phase. We present JWST/MIRI-MRS data of 18 low-mass protostellar systems in the JOYS program, focusing on gas-phase molecular lines in spectra extracted from the central protostellar positions. Besides H2, the most commonly detected molecules are H2O, CO2, CO, and OH. Other molecules such as 13CO2, C2H2, 13CCH, HCN, C4H2, CH4, and SO2 are detected only toward at most three of the sources. The JOYS data also yield the surprising detection of SiO gas toward two sources (BHR71-IRS1, L1448-mm) and for the first time CS and NH3 at mid-IR wavelengths toward a low-mass protostar (B1-c). The temperatures derived for the majority of the molecules are 100-300 K, much lower than what is typically derived toward more evolved Class II sources (>500 K). Toward three sources (e.g., TMC1-W), hot (~1000 K) H2O is detected, indicative of the presence of hot molecular gas in the embedded disks, but such warm emission from other molecules is absent. The agreement in abundance ratios with respect to H2O between ice and gas point toward ice sublimation in a hot core for a few sources (e.g., B1-c) whereas their disagreement and velocity offsets hint at high-temperature (shocked) conditions toward other sources (e.g., L1448-mm, BHR71-IRS1). The typical temperatures of the gas-phase molecules of 100-300 K are consistent with both ice sublimation in hot cores as well as high-temperature gas phase chemistry. Molecular features originating from the inner embedded disks are not commonly detected, likely because they are too extincted even at mid-IR wavelengths by small not-settled dust grains in upper layers of the disk.
this https URL and can be installed from the Python Package Index at this https URL . The simulation dataset will be made available at the time of publication