Recent works suggest that, in multiplanetary systems, a close-in exoplanet can sometimes avoid becoming tidally locked to its host star if it is captured into a secular spin-orbit resonance with a companion planet. In such a resonance, the planet remains at a sub-synchronous spin rate and an appreciable obliquity (the planet's spin-orbit misalignment angle). However, many of these works have only considered planets with fluid-like rheologies. Recent observations suggest that planets up to a few Earth masses may be rocky and thus may have an appreciable rigidity. In this work, we study the spin-orbit dynamics of such rigid planets using a linear dissipative tidal model and not enforcing principal axis rotation about the body's shortest principal axis. We identify a new class of spin-orbit resonances when the planet spins at twice its orbital frequency. These resonances exist at nonzero obliquity and spontaneously excite non-principal-axis rotation upon resonance capture. While these resonances eventually disappear as tidal dissipation damps the obliquity to zero (and the body returns to principal-axis rotation), they still modify the spin evolutionary history of the planet. Such resonances may enhance the prevalence of secular spin-orbit resonances in exoplanetary systems.
Combining Atacama Large Millimeter/sub-millimeter Array CO(2-1) mapping and JWST near- and mid-infrared imaging, we characterize the relationship between CO(2-1) and polycyclic aromatic hydrocarbon (PAH) emission at ~100 pc resolution in 66 nearby star-forming galaxies, expanding the sample size from previous ~100 pc resolution studies by more than an order of magnitude. Focusing on regions of galaxies where most of the gas is likely to be molecular, we find strong correlations between CO(2-1) and 3.3 micron, 7.7 micron, and 11.3 micron PAH emission, estimated from JWST's F335M, F770W, and F1130W filters. We derive power law relations between CO(2-1) and PAH emission, which have indices in the range 0.8-1.2, implying relatively weak variations in the observed CO-to-PAH ratios across the regions that we study. We find that CO-to-PAH ratios and scaling relationships near HII regions are similar to those in diffuse sight lines. The main difference between the two types of regions is that sight lines near HII regions show higher intensities in all tracers. Galaxy centers, on the other hand, show higher overall intensities and enhanced CO-to-PAH ratios compared to galaxy disks. Individual galaxies show 0.19 dex scatter in the normalization of CO at fixed I_PAH and this normalization anti-correlates with specific star formation rate (SFR/M*) and correlates with stellar mass. We provide a prescription that accounts for these galaxy-to-galaxy variations and represents our best current empirical predictor to estimate CO(2-1) intensity from PAH emission, which allows one to take advantage of JWST's excellent sensitivity and resolution to trace cold gas.
JWST observations of the young Galactic supernova remnant Cassiopeia A revealed an unexpected structure seen as a green emission feature in colored composite MIRI F1130W and F1280W images - hence dubbed the Green Monster - that stretches across the central parts of the remnant in projection. Combining the kinematic information from NIRSpec and MIRI MRS with the multi-wavelength imaging from NIRCam and MIRI, we associate the Green Monster with circumstellar material that was lost during an asymmetric mass-loss phase. MIRI images are dominated by dust emission but its spectra show emission lines from Ne, H and Fe with low radial velocities indicative of a CSM nature. An X-ray analysis of this feature in a companion paper (Vink et al. 2024) supports its CSM nature and detects significant blue shifting, thereby placing the Green Monster on the near side, in front of the Cas A SN remnant. The most striking features of the Green Monster are dozens of almost perfectly circular 1" - 3" sized holes, most likely created by interaction between high-velocity SN ejecta material and the CSM. Further investigation is needed to understand whether these holes were formed by small 8000-10500 km/s N-rich ejecta knots that penetrated and advanced out ahead of the remnant's 5000 - 6000 km/s outer blastwave, or by narrow ejecta fingers that protrude into the forward-shocked CSM. The detection of the Green Monster provides further evidence of the highly asymmetric mass-loss that Cas A's progenitor star underwent prior to explosion.
The Nancy Grace Roman Space Telescope will implement a devoted weak gravitational lensing program with its High Latitude Wide Area Survey. For cosmological purposes, a critical step in Roman image processing is to combine dithered undersampled images into unified oversampled images and thus enable high-precision shape measurements. IMCOM is an image coaddition algorithm which offers control over point spread functions in output images. This paper presents the refactored IMCOM software, featuring full object-oriented programming, improved data structures, and alternative linear algebra strategies for determining coaddition weights. Combining these improvements and other acceleration measures, to produce almost equivalent coadded images, the consumption of core-hours has been reduced by about an order of magnitude. We then re-coadd a $16 \times 16 \,{\rm arcmin}^2$ region of our previous image simulations with three linear algebra kernels in four bands, and compare the results in terms of IMCOM optimization goals, properties of coadded noise frames, and measurements of simulated stars. The Cholesky kernel is efficient and relatively accurate, yet its irregular windows for input pixels slightly bias coaddition results. The iterative kernel avoids this issue by tailoring input pixel selection for each output pixel; it yields better noise control, but can be limited by random errors due to finite tolerance. The empirical kernel coadds images using an empirical relation based on geometry; it is inaccurate, but being much faster, it provides a valid option for "quick look" purposes. We fine-tune IMCOM hyperparameters in a companion paper.
Gaia astrometry of nearby stars is precise enough to detect the tiny displacements induced by substellar companions, but radial velocity data are needed for definitive confirmation. Here we present radial velocity follow-up observations of 28 M and K stars with candidate astrometric substellar companions, which led to the confirmation of two systems, Gaia-4b and Gaia-5b, and the refutation of 21 systems as stellar binaries. Gaia-4b is a massive planet ($M = 11.8 \pm 0.7 \:\mathrm{M_J}$) in a $P = 571.3 \pm 1.4\:\mathrm{day}$ orbit with a projected semi-major axis $a_0=0.312 \pm 0.040\:\mathrm{mas}$ orbiting a $0.644 \pm 0.02 \:\mathrm{M_\odot}$ star. Gaia-5b is a brown dwarf ($M = 20.9 \pm 0.5\:\mathrm{M_J}$) in a $P = 358.58 \pm 0.19\:\mathrm{days}$ eccentric $e=0.6412 \pm 0.0027$ orbit with a projected angular semi-major axis of $a_0 = 0.947 \pm 0.038\:\mathrm{mas}$ around a $0.34 \pm 0.03 \mathrm{M_\odot}$ star. Gaia-4b is one of the first exoplanets discovered via the astrometric technique, and is one of the most massive planets known to orbit a low-mass star.
The kinematic Sunyaev--Zel'dovich (kSZ) effect induces a non-zero density-density-temperature bispectrum, which we can use to reconstruct the large-scale velocity field from a combination of cosmic microwave background (CMB) and galaxy density measurements, in a procedure known as ``kSZ velocity reconstruction''. This method has been forecast to constrain large-scale modes with future galaxy and CMB surveys, improving their measurement beyond what is possible with the galaxy surveys alone. Such measurements will enable tighter constraints on large-scale signals such as primordial non-Gaussianity, deviations from homogeneity, and modified gravity. In this work, we demonstrate a statistically significant measurement of kSZ velocity reconstruction for the first time, by applying quadratic estimators to the combination of the ACT DR6 CMB+kSZ map and the DESI LRG galaxies (with photometric redshifts) in order to reconstruct the velocity field. We do so using a formalism appropriate for the 2-dimensional projected galaxy fields that we use, which naturally incorporates the curved-sky effects important on the largest scales. We find evidence for the signal by cross-correlating with an external estimate of the velocity field from the spectroscopic BOSS survey and rejecting the null (no-kSZ) hypothesis at $3.8\sigma$. Our work presents a first step towards the use of this observable for cosmological analyses.
JWST has revealed an abundance of compact, red objects at $z\approx5-8$ dubbed "little red dots" (LRDs), whose SEDs display a faint blue UV continuum followed by a steep rise in the optical. Despite extensive study of their characteristic V-shaped SEDs, the nature of LRDs remains unknown. We present a new analysis of the NIRSpec/PRISM spectrum of A2744-QSO1, a triply imaged LRD at $z=7.04$ from the UNCOVER survey. The spectrum shows a strong Balmer break and broad Balmer emission lines, both of which are difficult to explain with models invoking exclusively AGN or stellar contributions. Our fiducial model decomposes the spectrum into a post-starburst galaxy dominating the UV-optical continuum and a reddened AGN being sub-dominant at all wavelength and contributing at $\sim20\%$ level. However, our most credible model infers a stellar mass of $M_\star\approx 4\times10^9\,\mathrm{M_\odot}$ within a radius of $r_\mathrm{e}<30\,$pc, driving its central density to the highest among observations to date. This high central density could be explained if A2744-QSO-1 is the early-forming core of a modern-day massive elliptical galaxy that later puffed up via the inside-out growth channel. The models also necessitate an unusually steep dust law to preserve the strong break strength, though this steepness may be explained by a deficit of large dust grains. It is also probable that these challenges reflect our ignorance of A2744-QSO1's true nature. Future variability and reverberation mapping studies could help disentangle the galaxy and AGN contribution to the continuum, and deeper redder observations could also unveil the dust properties in LRDs.
Gravitational redshift and Doppler effects give rise to an antisymmetric component of the galaxy correlation function when cross-correlating two galaxy populations or two different tracers. In this paper, we assess the detectability of these effects in the Euclid spectroscopic galaxy survey. We model the impact of gravitational redshift on the observed redshift of galaxies in the Flagship mock catalogue using a Navarro-Frenk-White profile for the host haloes. We isolate these relativistic effects, largely subdominant in the standard analysis, by splitting the galaxy catalogue into two populations of faint and bright objects and estimating the dipole of their cross-correlation in four redshift bins. In the simulated catalogue, we detect the dipole signal on scales below $30\,h^{-1}{\rm Mpc}$, with detection significances of $4\,\sigma$ and $3\,\sigma$ in the two lowest redshift bins, respectively. At higher redshifts, the detection significance drops below $2\,\sigma$. Overall, we estimate the total detection significance in the Euclid spectroscopic sample to be approximately $6\,\sigma$. We find that on small scales, the major contribution to the signal comes from the nonlinear gravitational potential. Our study on the Flagship mock catalogue shows that this observable can be detected in Euclid Data Release 2 and beyond.
Using kinematic data from the Gaia Data Release 3 catalog, along with metallicity estimates robustly derived from Gaia XP spectra, we have explored the Galactic stellar halo in search of both known and potentially new substructures. By applying the HDBSCAN clustering algorithm in IoM space (i.e. $E,L_{z}$ and $L_{\perp}$$ = \sqrt{L_{x}^2+L_{y}^2}$), we identified 5 previously known substructures: Gaia-Sausage-Enceladus (GSE), Helmi Streams, I'itoi + Sequoia and Hot Thick Disc. We additionally found NGC 3201 and NGC 5139 in this work, and NGC 3201 shares similar distributions in phase space and metallicties to Arjuna, which possibly implies that they have the same origin. Three newly discovered substructures are Prograde Substructure 1 (PG1), Prograde Substructure 2 (PG2) and the Low Energy Group. PG1, with a higher $V_{\phi}$ than typical GSE member stars, is considered as either a low eccentricity and metal-rich part of GSE or part of the metal-poor disc. PG2, sharing kinematic similarities with Aleph, is thought to be its relatively highly eccentric component or the mixture of Aleph and disc. The Low Energy Group, whose metal-poor component of metallicity distribution function has a mean value [M/H] $\sim$ $-$1.29 (compared to that of Heracles [M/H] $\sim$ $-$1.26), may have associations with Heracles.
We report the recent discovery of two new eruptions of the recurrent nova M31N 2017-01e in the Andromeda galaxy. The latest eruption, M31N 2024-08c, reached $R=17.8$ on 2024 August 06.85 UT, $\sim2$ months earlier than predicted. In addition to this recent eruption, a search of archival PTF data has revealed a previously unreported eruption on 2014 June 18.46 UT that reached a peak brightness of $R\sim17.9$ approximately a day later. The addition of these two eruption timings has allowed us to update the mean recurrence time of the nova. We find $\langle T_\mathrm{rec} \rangle = 924.0\pm7.0$ days ($2.53\pm0.02$ yr), which is slightly shorter than our previous determination. Thus, M31N 2017-01e remains the nova with the second shortest recurrence time known, with only M31N 2008-12a being shorter. We also present a low-resolution spectrum of the likely quiescent counterpart of the nova, a $\sim20.5$ mag evolved B star displaying an $\sim14.3$ d photometric modulation.
this https URL . ExoJAX2 is scheduled to be released after the review process
this http URL by mnras