Quasar feedback may play a key role in the evolution of massive galaxies. The dust-reddened quasar, F2M110648.35$+$480712 at $z = 0.4352$ is one of the few cases at its redshift that exhibits powerful quasar feedback through bipolar outflows. Our new observation with the integral field unit mode of Near-infrared Spectrograph onboard JWST opens a new window to examine this spectacular outflow through Pa$\alpha$ emission line with $\sim$3$\times$ better spatial resolution than previous work. The morphology and kinematics of the Pa$\alpha$ nebula confirm the existence of a bipolar outflow extending on a scale of $\sim$17$\times$14 kpc and with a velocity reaching $\sim$1100 km s$^{-1}$. The higher spatial resolution of our new observation leads to more reliable measurements of outflow kinematics. Considering only the spatially resolved outflow and assuming an electron density of 100 cm$^{-2}$, the mass, momentum and kinetic energy outflow rates are $\sim$50-210 M$_{\odot}$ yr$^{-1}$, $\sim$0.3-1.7$\times$10$^{36}$ dynes ($\sim$14-78\% of the quasar photon momentum flux) and $\sim$0.16-1.27$\times$10$^{44}$ erg s$^{-1}$ ($\sim$0.02-0.20\% of the quasar bolometric luminosity), respectively. The local instantaneous outflow rates generally decrease radially. We infer that the quasar is powerful enough to drive the outflow, while stellar processes cannot be overlooked as a contributing energy source. The mass outflow rate is $\sim$0.4-1.5 times the star formation rate, and the ratio of kinetic energy outflow rate to the quasar bolometric luminosity is comparable to the minimum value required for negative quasar feedback in simulations. This outflow may help regulate the star formation activity within the system to some extent.
According to CMB measurements, baryonic matter constitutes about $5\%$ of the mass-energy density of the universe. A significant population of these baryons, for a long time referred to as `missing', resides in a low density, warm-hot intergalactic medium (WHIM) outside galaxy clusters, tracing the ``cosmic web'', a network of large scale dark matter filaments. Various studies have detected this inter-cluster gas, both by stacking and by observing individual filaments in compact, massive systems. In this paper, we study short filaments (< 10 Mpc) connecting massive clusters ($M_{500} \approx 3\times 10^{14} M_{\odot}$) detected by the Atacama Cosmology Telescope (ACT) using the scattering of CMB light off the ionised gas, a phenomenon known as the thermal Sunyaev-Zeldovich (tSZ) effect. The first part of this work is a search for suitable candidates for high resolution follow-up tSZ observations. We identify four cluster pairs with an intercluster signal above the noise floor (S/N $>$ 2), including two with a tentative $>2\sigma$ statistical significance for an intercluster bridge from the ACT data alone. In the second part of this work, starting from the same cluster sample, we directly stack on ${\sim}100$ cluster pairs and observe an excess SZ signal between the stacked clusters of $y=(7.2^{+2.3}_{-2.5})\times 10^{-7}$ with a significance of $3.3\sigma$. It is the first tSZ measurement of hot gas between clusters in this range of masses at moderate redshift ($\langle z\rangle\approx 0.5$). We compare this to the signal from simulated cluster pairs with similar redshifts and separations in the THE300 and MAGNETICUM Pathfinder cosmological simulations and find broad consistency. Additionally, we show that our measurement is consistent with scaling relations between filament parameters and mass of the embedded halos identified in simulations.
this https URL and its archive at this https URL