The baryonic physics shaping galaxy formation and evolution are complex, spanning a vast range of scales and making them challenging to model. Cosmological simulations rely on subgrid models that produce significantly different predictions. Understanding how models of stellar and active galactic nuclei (AGN) feedback affect baryon behavior across different halo masses and redshifts is essential. Using the SIMBA and IllustrisTNG suites from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project, we explore the effect of parameters governing the subgrid implementation of stellar and AGN feedback. We find that while IllustrisTNG shows higher cumulative feedback energy across all halos, SIMBA demonstrates a greater spread of baryons, quantified by the closure radius and circumgalactic medium (CGM) gas fraction. This suggests that feedback in SIMBA couples more effectively to baryons and drives them more efficiently within the host halo. There is evidence that different feedback modes are highly interrelated in these subgrid models. Parameters controlling stellar feedback efficiency significantly impact AGN feedback, as seen in the suppression of black hole mass growth and delayed activation of AGN feedback to higher mass halos with increasing stellar feedback efficiency in both simulations. Additionally, AGN feedback efficiency parameters affect the CGM gas fraction at low halo masses in SIMBA, hinting at complex, non-linear interactions between AGN and SNe feedback modes. Overall, we demonstrate that stellar and AGN feedback are intimately interwoven, especially at low redshift, due to subgrid implementation, resulting in halo property effects that might initially seem counterintuitive.
Young supernova remnants (SNRs) are believed to be the origin of energetic cosmic rays (CRs) below the "knee" of their spectrum at $\sim3$ petaelectronvolt (PeV, $10^{15}$ eV). Nevertheless, the precise location, duration, and operation of CR acceleration in young SNRs are open questions. Here, we report on multi-epoch X-ray observations of Cassiopeia A (Cas A), a 350-year-old SNR, in the 15-50 keV band that probes the most energetic CR electrons. The observed X-ray flux decrease $(15\pm1\%)$, contrary to the expected $>$90\% decrease based on previous radio, X-ray, and gamma-ray observations, provides unambiguous evidence for CR electron acceleration operating in Cas A. A temporal model for the radio and X-ray data accounting for electron cooling and continuous injection finds that the freshly injected electron spectrum is significantly harder (exponential cutoff power law index $q=2.15$), and its cutoff energy is much higher ($E_{cut}=36$ TeV) than the relic electron spectrum ($q=2.44\pm0.03$, $E_{cut}=4\pm1$ TeV). Both electron spectra are naturally explained by the recently developed modified nonlinear diffusive shock acceleration (mNLDSA) mechanism. The CR protons producing the observed gamma rays are likely accelerated at the same location by the same mechanism as those for the injected electron. The Cas A observations and spectral modeling represent the first time radio, X-ray, gamma ray and CR spectra have been self-consistently tied to a specific acceleration mechanism -- mNLDSA -- in a young SNR.
We report observations of direct evidence of energetic protons being accelerated above ~400 keV within the reconnection exhaust of a heliospheric current sheet (HCS) crossing by NASA's Parker Solar Probe (PSP) at a distance of ~16.25 solar radii (Rs) from the Sun. Inside the extended exhaust, both the reconnection-generated plasma jets and the accelerated protons propagated toward the Sun, unambiguously establishing their origin from HCS reconnection sites located beyond PSP. Within the core of the exhaust, PSP detected stably trapped energetic protons up to ~400 keV, which is approximately 1000 times greater than the available magnetic energy per particle. The differential energy spectrum of the accelerated protons behaved as a pure power-law with spectral index of about -5. Supporting simulations using the kglobal model suggest that the trapping and acceleration of protons up to ~400 keV in the reconnection exhaust is likely facilitated by merging magnetic islands with a guide field between ~0.2-0.3 of the reconnecting magnetic field, consistent with the observations. These new results, enabled by PSP's proximity to the Sun, demonstrate that magnetic reconnection in the HCS is a significant new source of energetic particles in the near-Sun solar wind. The discovery of in-situ particle acceleration via magnetic reconnection at the HCS provides valuable insights into this fundamental process which frequently converts the large magnetic field energy density in the near-Sun plasma environment and may be responsible for heating the sun's atmosphere, accelerating the solar wind, and energizing charged particles to extremely high energies in solar flares.
https://doi.org/10.1126/science.ado2993 ( this https URL ). Cite this paper as Yang et al. 2024, Science, 386, 76-82