Among the most puzzling early discoveries of JWST are "Little Red Dots" -- compact red sources that host broad Balmer emission lines and, in many cases, exhibit a "V shaped" change in slope in the rest-optical. The physical properties of Little Red Dots currently have order-of-magnitude uncertainties, because models to explain the continuum of these sources differ immensely. Here, we leverage the complete selection of red sources in the RUBIES program, supplemented with public PRISM spectra, to study the origin of this "V shape". By fitting a broken power law with a flexible inflection point, we find that a large fraction (20/44, nearly all spatially unresolved) of extremely red H$\alpha$ emitters at $2<z<6$ exhibit a strong change in slope, and that all strong inflections appear associated with the Balmer limit ($0.3645$ $\mu$m). Using a simple model of a reddened AGN with an unobscured scattered light component, we demonstrate that the observed "V shape" in Little Red Dots is unlikely to occur at any specific wavelength if the entire continuum is dominated by light from a power law AGN continuum. In contrast, models with an intrinsic feature at the Balmer limit, such as those that are dominated by evolved stellar populations in the rest-UV-to-optical, can produce the observed spectral shapes, provided that a reddened component picks up sufficiently redward of the break. While no model can comfortably explain the full Little Red Dot spectral energy distribution, the common inflection location suggests that it is most likely a single component that consistently dominates the rest-UV-to-optical in Little Red Dots, and that this component is associated with $T\sim10^4$ K hydrogen due to the clear preference for a break at H$_\infty$.
In order to better connect core-collapse supernovae (CCSN) theory with its observational signatures, we have developed a simulation pipeline from the onset of core collapse to beyond shock breakout. Using this framework, we present a three-dimensional simulation study following the evolution from five seconds to over five days of a 17-M$_{\odot}$ progenitor that explodes with $\sim$10$^{51}$ erg of energy and $\sim$0.1 M$_{\odot}$ of $^{56}$Ni ejecta. The early explosion is highly asymmetric, expanding most prominently along the southern hemisphere. This early asymmetry is preserved to shock breakout, $\sim$1 day later. Breakout itself evinces strong angle-dependence, with as much a day delay in shock breakout by direction. The nickel ejecta closely tails the forward shock, with velocities at breakout as high as $\sim$7000 km s$^{-1}$. A delayed reverse shock forming at the H/He interface on hour timescales leads to the formation of Rayleigh-Taylor instabilities, fast-moving nickel bullets, and almost complete mixing of the metal core into the hydrogen envelope. For the first time, we illustrate the angle-dependent emergent broadband and bolometric light curves from simulations evolved in three-dimensions in entirety, continuing through hydrodynamic shock breakout a CCSN model of a massive stellar progenitor evolved with detailed, late-time neutrino microphysics and transport. Our case study of a single progenitor suggests that 3D simulations initiated with detailed neutrino heating can begin to generically produce the cornucopia of suggested asymmetries and features in CCSNe observations, while establishing the methodology to study this problem in breadth.
As a well-known open cluster, NGC 2323 (also called M50) has been widely investigated for over a hundred years and has always been considered a classical single cluster. In this work, with the help of Gaia DR3, we study the binary structure nature of this cluster. Although indistinguishable in the spatial space, the small but undeniable difference in the proper motion indicates that they may be two individual clusters. After investigating the properties of the two clusters, it is found that they have very close positions (three-dimensional $\Delta$pos = 12.3 pc, $\sigma_{\Delta \mathrm{pos}} = 3.4$ pc) and similar tangential velocities (two-dimensional $\Delta$V = 2.2 km s$^{-1}$, $\sigma_{\Delta \mathrm{V}} = 0.02$ km s$^{-1}$), indicating the existence of their physical association. Moreover, the best isochrone fitting ages of the two clusters are the same (158 Myr), further proving their possibly common origin. To comprehensively understand the formation and evolution of this binary cluster, we employ the PETAR $N$-body code to trace back their birthplace and deduce their dynamical evolutionary fate. With observational mean cluster properties, the simulations suggest that they may form together, and then orbit each other as a binary cluster for over 200 Myr. After that, because of their gradual mass loss, the two clusters will eventually separate and evolve into two independent clusters. Meanwhile, the numerical $N$-body simulation suggests that the less massive cluster is unlikely to be the cluster tidal tails created by the differential rotation of the Milky Way.
We study the properties of long gamma-ray burst (GRB) host galaxies using a statistical modelling framework derived to model damped Lyman-$\alpha$ absorbers (DLAs) in quasar spectra at high redshift. The distribution of NHI for GRB-DLAs is $\sim$10 times higher than what is found for quasar-DLAs at similar impact parameters. We interpret this as a temporal selection effect due to the short-lived GRB progenitor probing its host at the onset of a starburst where the interstellar medium may exhibit multiple overdense regions. Owing to the larger NHI, the dust extinction is larger with 29 per cent of GRB-DLAs exhibiting A(V)>1 mag in agreement with the fraction of 'dark bursts'. Despite the differences in NHI distributions, we find that high-redshift 2 < z < 3 quasar- and GRB-DLAs trace the luminosity function of star-forming host galaxies in the same way. We propose that their differences may arise from the fact that the galaxies are sampled at different times in their star formation histories, and that the absorption sightlines probe the galaxy haloes differently. Quasar-DLAs sample the full H I cross-section, whereas GRB-DLAs sample only regions hosting cold neutral medium. Previous studies have found that GRBs avoid high-metallicity galaxies ($\sim$0.5 $Z_{\odot}$). Since at these redshifts galaxies on average have lower metallicities, our sample is only weakly sensitive to such a threshold. Lastly, we find that the modest detection rate of cold gas (H$_2$ or C I) in GRB spectra can be explained mainly by a low volume filling factor of cold gas clouds and to a lesser degree by destruction from the GRB explosion itself.
this https URL . arXiv admin note: substantial text overlap with arXiv:1907.02638 ; text overlap with arXiv:1409.0637 , arXiv:astro-ph/0411083