Neutrino flavor evolution is critical for understanding the physics of dense astrophysical regimes, including core-collapse supernovae (CCSN). Powerful numerical integration codes exist for simulating these environments, yet a complete understanding of the inherent nonlinearity of collective neutrino flavor oscillations and how it fits within the overall framework of these simulations remains an open challenge. For this reason, we continue developing statistical data assimilation (SDA) to infer solutions to the flavor field in a CCSN envelope, given simulated measurements far from the source. SDA is an inference paradigm designed to optimize a model with sparse data. Our model consists of neutrino beams emanating from a CCSN and coherently interacting with each other and with a background of other matter particles in one dimension $r$. One model feature of high interest is the distribution of those matter particles as a function of radius $r$, or the "matter potential" $V(r)$ -- as it significantly dictates flavor evolution. In this paper, we expand the model beyond previous incarnations, by replacing the monotonically-decaying analytic form for $V(r)$ we previously used with a more complex -- and more physically plausible -- set of profiles derived from a one-dimensional (spherically symmetric) hydrodynamics simulation of a CCSN explosion. We ask whether the SDA procedure can use simulated flavor measurements at physically accessible locations (i.e. in vacuum) to determine the extent to which different matter density profiles through which the neutrinos propagate in the matter-dominated regime are compatible with these measurements. Within the scope of our small-scale model, we find that the neutrino flavor measurements in the vacuum regime are able to discriminate between different matter profiles, and we discuss implications regarding a future galactic CCSN detection.
Spectrally hard X-ray emission with double-peak light curves (LCs) and orbitally modulated gamma rays have been observed in some millisecond pulsar binaries, phenomena attributed to intrabinary shocks (IBSs). While the existing IBS model by Sim, An, and Wadiasingh (2024) successfully explains these high-energy features observed in three pulsar binaries, it neglects particle energy loss within the shock region. We refine this IBS model to incorporate radiative losses of X-ray emitting electrons and positrons, and verify that the losses have insignificant impact on the observed LCs and spectra of the three binaries. Applying our refined IBS model to the X-ray bright pulsar binary PSR J1723-2837, we predict that it can be detected by the Cherenkov Telescope Array. Additionally, we propose that the long-term X-ray variability observed in XSS J12270-4859 and PSR J1723-2837 is due to changes in the shape of their IBSs. Our modeling of the X-ray variability suggests that these IBS shape changes may alter the extinction of the companion's optical emission, potentially explaining the simultaneous optical and X-ray variability observed in XSS J12270-4859. We present the model results and discuss their implications.
By cross-matching the eclipsing binary catalog from TESS with that from LAMOST MRS, semi-detached eclipsing binaries with radial velocities coverage spanning more than 0.3 phases were authenticated. The absolute parameters for these systems were determined by simultaneous modeling of light curves and radial velocities using the Wilson-Devinney program. Additionally, the secular orbital variations were further analyzed using O-C curves. Eight semi-detached eclipsing binaries have been identified. Among them, seven feature primary stars situated within the main-sequence band, while their secondaries are all in evolved stages. This suggests that these systems likely originated as detached binaries and have undergone a reversal of the mass ratio. However, TIC 428257299 is an exception where the primary is Roche lobe-filling, and its secondary has experienced mass loss events. Additionally, TIC 8677671 and TIC 318217844 demonstrate secular cyclical changes of orbital periods. Specifically, for TIC 8677671, the cyclical change could result from magnetic activity or a third body which is likely to be compact, with a mass of at least 2.97 M$_{\odot}$.
A critical component of particle acceleration in astrophysical shocks is the non-resonant (Bell) instability, where the streaming of cosmic rays (CRs) leads to the amplification of magnetic fields necessary to scatter particles. In this work we use kinetic particle-in-cells simulations to investigate the high-CR current regime, where the typical assumptions underlying the Bell instability break down. Despite being more strongly driven, significantly less magnetic field amplification is observed compared to low-current cases, an effect due to the anisotropic heating that occurs in this regime. We also find that electron-scale modes, despite being fastest growing, mostly lead to moderate electron heating and do not affect the late evolution or saturation of the instability.
this https URL ). Accepted for publication in A&A