The bulk of old stars in the Galactic disk have migrated radially by up to several kpc in their lifetimes, yet the disk has remained relatively cool, i.e., the ratio of radial heating to migration has been small. Here, we demonstrate that this small ratio places very strong constraints on which mechanisms could have been responsible for orbital transport in our Galaxy. For instance, Sellwood & Binney's mechanism of nonlinear horseshoe transport by spirals tends to produce too high a ratio of heating to migration, unless the spirals' amplitudes are heavily suppressed away from their corotation resonances, or their pitch angles are significantly larger than is observed. This problem is only made worse if one includes the effect of the Galactic bar, diffusion due to disk or halo substructure, etc. Resonant (but non-horseshoe) scattering by spirals can drive transport consistent with the data, but even this requires some fine-tuning. In short, reproducing both the observed radial migration and the small ratio of heating to migration is a highly nontrivial requirement, and poses a significant challenge to models of the Milky Way's dynamical history, theories of spiral structure, and the identification of 'Milky Way analogues' in cosmological simulations.
Supernova remnants (SNRs) can exert strong influence on molecular clouds (MCs) through interaction by shock wave and cosmic rays. In this paper, we present our mapping observation of HCO+ and HCN 1-0 lines towards 13 SNRs interacting with MCs, together with archival data of CO isotopes. Strong HCO+ emission is found in the fields of view (FOVs) of SNRs W30, G9.7-0.0, Kes 69, 3C 391, 3C 396, W51C, HC 40, and CTB109 in the local-standard-of-rest (LSR) velocity intervals in which they are suggested to show evidence of SNR-MC interaction. We find an incomplete 12CO shell surrounding G9.7-0.0 with an expanding motion. This shell may be driven by the stellar wind of the SNR progenitor. We also find an arc of 12CO gas spatially coincident with the northwestern radio shell of Kes 69. As for the HCO+ line emission, SNRs 3C 391 and W51C exhibit significant line profile broadening indicative of shock perturbation, and CTB109 exhibits a possible blue-shifted line wing brought by shock interaction. We do not find significant variation of the I(HCO+)/I(HCN) line ratio between broad-line and narrow-line regions, among different SNRs, and between MCs associated with SNRs and typical Galactic MCs. Therefore, we caution on using the I(HCO+)/I(HCN) line ratio as a diagnostic of SNR feedback and CR ionization. We also estimate the N(HCO+)/N(CO) abundance ratio in 11 regions towards the observed SNRs, but they show little difference from the typical values in quiescent MCs, possibly because N(HCO+)/N(CO) is not an effective tracer of CR ionization.
Based on the LAMOST spectroscopy and TESS time-series photometry, we have obtained a main-sequence star sample of $\delta$ Scuti and $\gamma$ Doradus stars. The sample includes 1534 $\delta$ Sct stars, 367 $\gamma$ Dor stars, 1703 $\delta$ Sct$| \gamma$ Dor stars, 270 $\gamma$ Dor$| \delta$ Sct stars, along with 105 '$\delta$ Sct candidates' and 32 '$\gamma$ Dor candidates'. After correcting for projection effects, we derived the equatorial rotational velocity distribution for $\delta$ Sct and $\gamma$ Dor stars and compared it with that of normal stars. The rotational velocity distributions of $\delta$ Sct and $\gamma$ Dor stars are extremely similar, with the only difference potentially due to the rotational variable stars that have not been completely removed. In contrast, the rotational velocity distribution of normal stars is more dispersed compared to pulsating stars. Additionally, the peak rotational velocity of the pulsating stars is about 10 km s$^{-1}$ higher than that of normal stars. Unlike the normal stars, which show a monotonic increase in peak velocity with mass between 1.8 and 2.5 $M_{\odot}$, the rotational velocity distribution of $\delta$ Sct stars does not exhibit a strong mass dependence. We also found that normal stars accelerate during the late main-sequence evolutionary phase, while $\delta$ Sct stars decelerate. Furthermore, there may still be unclassified stars with diverse rotational properties in the normal star sample compared to the $\delta$ Sct stars, which is likely to be an important contributor to the broader dispersion observed in its rotational velocity distribution. The photometric amplitude in $\delta$ Sct stars is modulated with rotational velocity, with high-amplitude stars typically rotating slowly and low-amplitude stars showing a broad distribution of rotational velocities.
this http URL for more details
this https URL doi: https://doi.org/10.1051/0004-6361/202451305
arXiv:2411.04290 ) is accepted in ApJ. Comments are welcome