The Space Telescope Imaging Product Simulator (STIPS) is a Python-based package that can be used to simulate scenes from the upcoming \textit{Nancy Grace Roman Space Telescope} (\nancy). STIPS is able to generate post-pipeline astronomical images of any number of sensor chip assembly (SCA) detectors, up to the entire 18-SCA Wide-Field Instrument array on \nancy. STIPS can inject either point spread functions generated with {\tt WebbPSF}, or extended sources in any of the \nancy filters. The output images can include flat field, dark current, and cosmic ray residuals. Additionally, STIPS includes an estimate of Poisson and readout noise, as well as an estimate of the zodiacal background and internal background from the telescope. However, STIPS does not include instrument saturation, non-linearity, or distortion effects. STIPS is provided as an open source repository on GitHub.
We present the samples of galaxies and quasars used for DESI 2024 cosmological analyses, drawn from the DESI Data Release 1 (DR1). We describe the construction of large-scale structure (LSS) catalogs from these samples, which include matched sets of synthetic reference `randoms' and weights that account for variations in the observed density of the samples due to experimental design and varying instrument performance. We detail how we correct for variations in observational completeness, the input `target' densities due to imaging systematics, and the ability to confidently measure redshifts from DESI spectra. We then summarize how remaining uncertainties in the corrections can be translated to systematic uncertainties for particular analyses. We describe the weights added to maximize the signal-to-noise of DESI DR1 2-point clustering measurements. We detail measurement pipelines applied to the LSS catalogs that obtain 2-point clustering measurements in configuration and Fourier space. The resulting 2-point measurements depend on window functions and normalization constraints particular to each sample, and we present the corrections required to match models to the data. We compare the configuration- and Fourier-space 2-point clustering of the data samples to that recovered from simulations of DESI DR1 and find they are, generally, in statistical agreement to within 2\% in the inferred real-space over-density field. The LSS catalogs, 2-point measurements, and their covariance matrices will be released publicly with DESI DR1.
this https URL ). 76 pages, 20 figures
We present the measurements and cosmological implications of the galaxy two-point clustering using over 4.7 million unique galaxy and quasar redshifts in the range $0.1<z<2.1$ divided into six redshift bins over a $\sim 7,500$ square degree footprint, from the first year of observations with the Dark Energy Spectroscopic Instrument (DESI Data Release 1). By fitting the full power spectrum, we extend previous DESI DR1 baryon acoustic oscillation (BAO) measurements to include redshift-space distortions and signals from the matter-radiation equality scale. For the first time, this Full-Shape analysis is blinded at the catalogue-level to avoid confirmation bias and the systematic errors are accounted for at the two-point clustering level, which automatically propagates them into any cosmological parameter. When analysing the data in terms of compressed model-agnostic variables, we obtain a combined precision of 4.7\% on the amplitude of the redshift space distortion signal reaching similar precision with just one year of DESI data than with 20 years of observation from previous generation surveys. We analyse the data to directly constrain the cosmological parameters within the $\Lambda$CDM model using perturbation theory and combine this information with the reconstructed DESI DR1 galaxy BAO. Using a Big Bang Nucleosynthesis Gaussian prior on the baryon density parameter, and a Gaussian prior on the spectral index, we constrain the matter density is $\Omega_m=0.296\pm 0.010 $ and the Hubble constant $H_0=(68.63 \pm 0.79)[{\rm km\, s^{-1}Mpc^{-1}}]$. Additionally, we measure the amplitude of clustering $\sigma_8=0.841 \pm 0.034$. The DESI DR1 results are in agreement with the $\Lambda$CDM model based on general relativity with parameters consistent with those from Planck. The cosmological interpretation of these results in combination with external datasets are presented in a companion paper.
this https URL ). 55 pages, 10 figures
We present cosmological results from the measurement of clustering of galaxy, quasar and Lyman-$\alpha$ forest tracers from the first year of observations with the Dark Energy Spectroscopic Instrument (DESI Data Release 1). We adopt the full-shape (FS) modeling of the power spectrum, including the effects of redshift-space distortions, in an analysis which has been validated in a series of supporting papers. In the flat $\Lambda$CDM cosmological model, DESI (FS+BAO), combined with a baryon density prior from Big Bang Nucleosynthesis and a weak prior on the scalar spectral index, determines matter density to $\Omega_\mathrm{m}=0.2962\pm 0.0095$, and the amplitude of mass fluctuations to $\sigma_8=0.842\pm 0.034$. The addition of the cosmic microwave background (CMB) data tightens these constraints to $\Omega_\mathrm{m}=0.3056\pm 0.0049$ and $\sigma_8=0.8121\pm 0.0053$, while further addition of the the joint clustering and lensing analysis from the Dark Energy Survey Year-3 (DESY3) data leads to a 0.4% determination of the Hubble constant, $H_0 = (68.40\pm 0.27)\,{\rm km\,s^{-1}\,Mpc^{-1}}$. In models with a time-varying dark energy equation of state, combinations of DESI (FS+BAO) with CMB and type Ia supernovae continue to show the preference, previously found in the DESI DR1 BAO analysis, for $w_0>-1$ and $w_a<0$ with similar levels of significance. DESI data, in combination with the CMB, impose the upper limits on the sum of the neutrino masses of $\sum m_\nu < 0.071\,{\rm eV}$ at 95% confidence. DESI data alone measure the modified-gravity parameter that controls the clustering of massive particles, $\mu_0=0.11^{+0.45}_{-0.54}$, while the combination of DESI with the CMB and the clustering and lensing analysis from DESY3 constrains both modified-gravity parameters, giving $\mu_0 = 0.04\pm 0.22$ and $\Sigma_0 = 0.044\pm 0.047$, in agreement with general relativity. [Abridged.]
We analyse the robustness of the DESI 2024 cosmological inference from fits to the full shape of the galaxy power spectrum to uncertainties in the Halo Occupation Distribution (HOD) model of the galaxy-halo connection and the choice of priors on nuisance parameters. We assess variations in the recovered cosmological parameters across a range of mocks populated with different HOD models and find that shifts are often greater than 20% of the expected statistical uncertainties from the DESI data. We encapsulate the effect of such shifts in terms of a systematic covariance term, $\mathsf{C}_{\rm HOD}$, and an additional diagonal contribution quantifying the impact of our choice of nuisance parameter priors on the ability of the effective field theory (EFT) model to correctly recover the cosmological parameters of the simulations. These two covariance contributions are designed to be added to the usual covariance term, $\mathsf{C}_{\rm stat}$, describing the statistical uncertainty in the power spectrum measurement, in order to fairly represent these sources of systematic uncertainty. This approach is more general and robust to choices of model free parameters or additional external datasets used in cosmological fits than the alternative approach of adding systematic uncertainties at the level of the recovered marginalised parameter posteriors. We compare the approaches within the context of a fixed $\Lambda$CDM model and demonstrate that our method gives conservative estimates of the systematic uncertainty that nevertheless have little impact on the final posteriors obtained from DESI data.
this https URL ). 44 pages, 21 figures, 4 tables
Emission Line Galaxies (ELGs) are one of the main tracers that the Dark Energy Spectroscopic Instrument (DESI) uses to probe the universe. However, they are afflicted by strong spurious correlations between target density and observing conditions known as imaging systematics. We present the imaging systematics mitigation applied to the DESI Data Release 1 (DR1) large-scale structure catalogs used in the DESI 2024 cosmological analyses. We also explore extensions of the fiducial treatment. This includes a combined approach, through forward image simulations in conjunction with neural network-based regression, to obtain an angular selection function that mitigates the imaging systematics observed in the DESI DR1 ELGs target density. We further derive a line-of-sight selection function from the forward model that removes the strong redshift dependence between imaging systematics and low redshift ELGs. Combining both angular and redshift-dependent systematics, we construct a 3D selection function and assess the impact of all selection functions on clustering statistics. We quantify differences between these extended treatments and the fiducial treatment in terms of the measured 2-point statistics. We find that the results are generally consistent with the fiducial treatment and conclude that the differences are far less than the imaging systematics uncertainty included in DESI 2024 full-shape measurements. We extend our investigation to the ELGs at $0.6<z<0.8$, i.e., beyond the redshift range ($0.8<z<1.6$) adopted for the DESI clustering catalog, and demonstrate that determining the full 3D selection function is necessary in this redshift range. Our tests showed that all changes are consistent with statistical noise for BAO analyses indicating they are robust to even severe imaging systematics. Specific tests for the full-shape analysis will be presented in a companion paper.
We present an in-depth analysis of the fiber assignment incompleteness in the Dark Energy Spectroscopic Instrument (DESI) Data Release 1 (DR1). This incompleteness is caused by the restricted mobility of the robotic fiber positioner in the DESI focal plane, which limits the number of galaxies that can be observed at the same time, especially at small angular separations. As a result, the observed clustering amplitude is suppressed in a scale-dependent manner, which, if not addressed, can severely impact the inference of cosmological parameters. We discuss the methods adopted for simulating fiber assignment on mocks and data. In particular, we introduce the fast fiber assignment (FFA) emulator, which was employed to obtain the power spectrum covariance adopted for the DR1 full-shape analysis. We present the mitigation techniques, organised in two classes: measurement stage and model stage. We then use high fidelity mocks as a reference to quantify both the accuracy of the FFA emulator and the effectiveness of the different measurement-stage mitigation techniques. This complements the studies conducted in a parallel paper for the model-stage techniques, namely the $\theta$-cut approach. We find that pairwise inverse probability (PIP) weights with angular upweighting recover the "true" clustering in all the cases considered, in both Fourier and configuration space. Notably, we present the first ever power spectrum measurement with PIP weights from real data.
We present cosmological constraints on deviations from general relativity (GR) from the first-year of clustering observations from the Dark Energy Spectroscopic Instrument (DESI) in combination with other datasets. We first consider the $\mu(a,k)$-$\Sigma(a,k)$ modified gravity (MG) parametrization (as well as $\eta(a,k)$) in flat $\Lambda$CDM and $w_0 w_a$CDM backgrounds. Using a functional form for time-only evolution gives $\mu_0= 0.11^{+0.44}_{-0.54}$ from DESI(FS+BAO)+BBN and a wide prior on $n_{s}$. Using DESI(FS+BAO)+CMB+DESY3+DESY5-SN, we obtain $\mu_0 = 0.05\pm 0.22$ and $\Sigma_0 = 0.009\pm 0.045$ in the $\Lambda$CDM background. In $w_0 w_a$CDM, we obtain $\mu_0 =-0.24^{+0.32}_{-0.28}$ and $\Sigma_0 = 0.006\pm 0.043$, consistent with GR, and we still find a preference of the data for dynamical dark energy with $w_0>-1$ and $w_a<0$. We then use binned forms in the two backgrounds starting with two bins in redshift and then combining them with two bins in scale for a total of 4 and 8 MG parameters, respectively. All MG parameters are found consistent with GR. We also find that the tension reported for $\Sigma_0$ with GR when using Planck PR3 goes away when we use the recent LoLLiPoP+HiLLiPoP likelihoods. As noted previously, this seems to indicate that the tension is related to the CMB lensing anomaly in PR3 which is also alleviated when using these likelihoods. We then constrain the class of Horndeski theory in the effective field theory of dark energy. We consider both EFT-basis and $\alpha$-basis. Assuming a power law parametrization for the function $\Omega$, which controls non-minimal coupling, we obtain $\Omega_0 = 0.0120^{+0.0021}_{-0.013}$ and $s_0 = 0.99^{+0.54}_{-0.20}$ from DESI(FS+BAO)+DESY5SN+CMB in a $\Lambda$CDM background. Similar results are obtained when using the $\alpha$-basis, where we constrain $c_M<1.24$, and are all consistent with GR. [Abridged.]
The "miscentering effect," i.e., the offset between a galaxy cluster's optically-defined center and the center of its gravitational potential, is a significant systematic effect on brightest cluster galaxy (BCG) studies and cluster lensing analyses. We perform a cross-match between the optical cluster catalog from the Hyper Suprime-Cam (HSC) Survey S19A Data Release and the Sunyaev-Zeldovich cluster catalog from Data Release 5 of the Atacama Cosmology Telescope (ACT). We obtain a sample of 186 clusters in common in the redshift range $0.1 \leq z \leq 1.4$ over an area of 469 deg$^2$. By modeling the distribution of centering offsets in this fiducial sample, we find a miscentered fraction (corresponding to clusters offset by more than 330 kpc) of ~25%, a value consistent with previous miscentering studies. We examine the image of each miscentered cluster in our sample and identify one of several reasons to explain the miscentering. Some clusters show significant miscentering for astrophysical reasons, i.e., ongoing cluster mergers. Others are miscentered due to non-astrophysical, systematic effects in the HSC data or the cluster-finding algorithm. After removing all clusters with clear, non-astrophysical causes of miscentering from the sample, we find a considerably smaller miscentered fraction, ~10%. We show that the gravitational lensing signal within 1 Mpc of miscentered clusters is considerably smaller than that of well-centered clusters, and we suggest that the ACT SZ centers are a better estimate of the true cluster potential centroid.
Previous research has established a relationship between radial action and scale height in Galactic disks, unveiling a correlation between radial and vertical heating. This finding poses a challenge to our existing comprehension of heating theories and consequently encodes crucial insights into the formation and heating history of Galactic disks. In this study, we perform N-body simulations with the aim of verifying the existence of this correlation between radial action and scale height, thereby enhancing our comprehension of the heating history of Galactic disks. We find that the relationship between radial action and scale height in our simulations can be described by the same functional form observed in previous work. Furthermore, the relationships derived from our simulations align well with those of the Galactic thin disk. However, they do not coincide with the inner thick disk but exhibit a rough correspondence with the outer thick disk, suggesting the possibility that additional heating mechanisms may be required to explain the inner thick disk. We also find that the mean radial action and scale height undergo rapid increases during the initial stages of the simulation, yet remain relatively unchanged as the disk evolves further. By tracing example particles, we uncover a correlation between radial and vertical heating in our simulation: as a particle in the disk gains or loses radial action, its vertical motion tends to oscillate on a more or less extended orbit, accompanied by a tendency to migrate outward or inward, respectively. The massive, long-lasting particles in our simulation contribute to disk heating by solely enhancing the rate of increase in scale height with radial action, while maintaining the functional form that describes the relationship between these two variables.
this http URL to ApJS