On May 24th, 2023, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), joined by the Advanced Virgo and KAGRA detectors, began the fourth observing run for a two-year-long dedicated search for gravitational waves. The LIGO Hanford and Livingston detectors have achieved an unprecedented sensitivity to gravitational waves, with an angle-averaged median range to binary neutron star mergers of 152 Mpc and 160 Mpc, and duty cycles of 65.0% and 71.2%, respectively, with a coincident duty cycle of 52.6%. The maximum range achieved by the LIGO Hanford detector is 165 Mpc and the LIGO Livingston detector 177 Mpc, both achieved during the second part of the fourth observing run. For the fourth run, the quantum-limited sensitivity of the detectors was increased significantly due to the higher intracavity power from laser system upgrades and replacement of core optics, and from the addition of a 300 m filter cavity to provide the squeezed light with a frequency-dependent squeezing angle, part of the A+ upgrade program. Altogether, the A+ upgrades led to reduced detector-wide losses for the squeezed vacuum states of light which, alongside the filter cavity, enabled broadband quantum noise reduction of up to 5.2 dB at the Hanford observatory and 6.1 dB at the Livingston observatory. Improvements to sensors and actuators as well as significant controls commissioning increased low frequency sensitivity. This paper details these instrumental upgrades, analyzes the noise sources that limit detector sensitivity, and describes the commissioning challenges of the fourth observing run.
We present a systematic search for radio active galactic nuclei (AGNs) in dwarf galaxies using recent observations taken by the Very Large Array Sky Survey (VLASS). To select these objects, we first establish a criterion to identify radio-excess AGNs using the infrared-radio correlation (IRRC) parameter, $q$, that describes the tight relation between radio and IR emission in star forming (SF) galaxies. We find a $2\sigma$ threshold of $q < 1.94$ to select radio-excess AGNs, which is derived from a sample of $\sim 7,000$ galaxies across the full mass range in the NASA-Sloan Atlas (NSA) that have radio and IR detections from VLASS and the Wide-Field Infrared Survey Explorer, respectively. We create catalogs of radio-excess AGNs and SF galaxies and make these available to the community. Applying our criterion to dwarf galaxies with stellar masses $M_\star \lesssim 3 \times 10^9 M_\odot$ and redshifts $z \le 0.15$, and carefully removing interlopers, we find 10 radio-excess AGNs with radio-optical positional offsets between $\sim$ 0 and 2.3 arcseconds (0 - 2.7 kpc). Based on statistical arguments and emission line diagnostics, we expect the majority of these radio-excess AGNs to be associated with the dwarf host galaxies rather than background AGNs. Five of the objects have evidence for hosting AGNs at other wavelengths, and 5 objects are identified as AGNs in dwarf galaxies for the first time. We also identify 8 variable radio sources in dwarf galaxies by comparing the VLASS epoch 1 and epoch 2 observations to FIRST detections presented in arXiv:1909.04670.
The coldest Y spectral type brown dwarfs are similar in mass and temperature to cool and warm ($\sim$200 -- 400 K) giant exoplanets. We can therefore use their atmospheres as proxies for planetary atmospheres, testing our understanding of physics and chemistry for these complex, cool worlds. At these cold temperatures, their atmospheres are cold enough for water clouds to form, and chemical timescales increase, increasing the likelihood of disequilibrium chemistry compared to warmer classes of planets. JWST observations are revolutionizing the characterization of these worlds with high signal-to-noise, moderate resolution near- and mid-infrared spectra. The spectra have been used to measure the abundances of prominent species like water, methane, and ammonia; species that trace chemical reactions like carbon monoxide; and even isotopologues of carbon monoxide and ammonia. Here, we present atmospheric retrieval results using both published fixed-slit (GTO program 1230) and new averaged time series observations (GO program 2327) of the coldest known Y dwarf, WISE 0855-0714 (using NIRSpec G395M spectra), which has an effective temperature of $\sim$ 264 K. We present a detection of deuterium in an atmosphere outside of the solar system via a relative measurement of deuterated methane (CH$_{3}$D) and standard methane. From this, we infer the D/H ratio of a substellar object outside the solar system for the first time. We also present a well-constrained part-per-billion abundance of phosphine (PH$_{3}$). We discuss our interpretation of these results and the implications for brown dwarf and giant exoplanet formation and evolution.
A major challenge in extracting information from current and upcoming surveys of cosmological Large-Scale Structure (LSS) is the limited availability of computationally expensive high-fidelity simulations. We introduce Neural Quantile Estimation (NQE), a new Simulation-Based Inference (SBI) method that leverages a large number of approximate simulations for training and a small number of high-fidelity simulations for calibration. This approach guarantees an unbiased posterior and achieves near-optimal constraining power when the approximate simulations are reasonably accurate. As a proof of concept, we demonstrate that cosmological parameters can be inferred at field level from projected 2-dim dark matter density maps up to $k_{\rm max}\sim1.5\,h$/Mpc at $z=0$ by training on $\sim10^4$ Particle-Mesh (PM) simulations with transfer function correction and calibrating with $\sim10^2$ Particle-Particle (PP) simulations. The calibrated posteriors closely match those obtained by directly training on $\sim10^4$ expensive PP simulations, but at a fraction of the computational cost. Our method offers a practical and scalable framework for SBI of cosmological LSS, enabling precise inference across vast volumes and down to small scales.
this https URL , Documentation: this https URL
this https URL ]. Submitted to Philosophical Transactions A