Near the ends of their lives, supernova remnants (SNRs) enter a "radiative phase," when efficient cooling of the postshock gas slows expansion. Understanding SNR evolution at this stage is crucial for estimating feedback in galaxies, as SNRs are expected to release energy and momentum into the interstellar medium near the ends of their lives. A standard prediction of SNR evolutionary models is that the onset of the radiative stage precipitates the formation of a dense shell behind the forward shock. In Paper I, we showed that such shell formation yields detectable nonthermal radiation from radio to $\gamma$-rays, most notably emission brightening by nearly two orders of magnitude. However, there remains no observational evidence for such brightening, suggesting that this standard prediction needs to be investigated. In this paper, we perform magneto-hydrodynamic simulations of SNR evolution through the radiative stage, including cosmic rays (CRs) and magnetic fields to assess their dynamical roles. We find that both sources of nonthermal pressure disrupt shell formation, reducing shell densities by a factor of a few to more than an order of magnitude. We also use a self-consistent model of particle acceleration to estimate the nonthermal emission from these modified SNRs and demonstrate that, for reasonable CR acceleration efficiencies and magnetic field strengths, the nonthermal signatures of shell formation can all but disappear. We therefore conclude that the absence of observational signatures of shell formation represents strong evidence that nonthermal pressures from CRs and magnetic fields play a critical dynamical role in late-stage SNR evolution.
Astronomers have found more than a dozen planets transiting 10-40 million year old stars, but even younger transiting planets have remained elusive. A possible reason for the lack of such discoveries is that newly formed planets are not yet in a configuration that would be recognized as a transiting planet or cannot exhibit transits because our view is blocked by a protoplanetary disk. However, we now know that many outer disks are warped; provided the inner disk is depleted, transiting planets may thus be visible. Here we report the observations of the transiting planet IRAS 04125+2902 b orbiting a 3 Myr, 0.7 M$_\odot$, pre-main sequence star in the Taurus Molecular Cloud. IRAS 04125+2902 hosts a nearly face-on (i $\sim$ 30$^\circ$) transitional disk and a wide binary companion. The planet has a period of 8.83 days, a radius of 10.9 R$_\oplus$ (0.97R$_J$), and a 95%-confidence upper limit on its mass of 90M$_\oplus$ (0.3M$_J$) from radial velocity measurements, making it a possible precursor of the super-Earths and sub-Neptunes that are commonly found around main-sequence stars. The rotational broadening of the star and the orbit of the wide (4", 635 AU) companion are both consistent with edge-on orientations. Thus, all components of the system appear to be aligned except the outer disk; the origin of this misalignment is unclear. Given the rare set of circumstances required to detect a transiting planet at ages when the disk is still present, IRAS 04125+2902 b likely provides a unique window into sub-Neptunes immediately following formation.
Collisionless self-gravitating systems, e.g., cold dark matter halos, harbor universal density profiles despite the intricate non-linear physics of hierarchical structure formation, the origin of which has been a persistent mystery. To solve this problem, we develop a self-consistent quasilinear theory (QLT) in action-angle space for the collisionless relaxation of driven, inhomogeneous, self-gravitating systems by perturbing the governing Vlasov-Poisson equations. We obtain a quasilinear diffusion equation (QLDE) for the secular evolution of the mean distribution function $f_0$ of a halo due to linear fluctuations (induced by random perturbations in the force field) that are collectively dressed by self-gravity, a phenomenon described by the response matrix. Unlike previous studies, we treat collective dressing up to all orders. Well-known halo density profiles $\rho(r)$ commonly observed in $N$-body simulations, including the $r^{-1}$ NFW cusp, an Einasto central core, and the $r^{-1.5}$ prompt cusp, emerge as quasi-steady state attractor solutions of the QLDE. The $r^{-1}$ cusp is a constant flux steady-state solution for a constantly accreting massive halo perturbed by small-scale white noise fluctuations induced by substructure. It is an outcome of the universal nature of collisionless relaxation: lower energy particles attract more particles, gain higher effective mass and get less accelerated by the fluctuating force field. The zero-flux steady state solution for an isolated halo is an $f_0$ that is flat in energy, and the corresponding $\rho(r)$ can either be cored or an $r^{-1.5}$ cusp depending on the inner boundary condition. The latter forms around a central dense object, e.g., a compact subhalo or a black hole. We demonstrate for the first time that these halo profiles emerge as quasi-steady state attractors of collisionless relaxation described by a self-consistent QLT.
Gaia XP spectra for over two hundred million stars have great potential for mapping metallicity across the Milky Way. Several recent studies have analyzed this data set to derive parameters and characterize systematics in the fluxes. We aim to construct an alternative catalog of atmospheric parameters from Gaia XP spectra by fitting them with synthetic spectra based on model atmospheres, and provide corrections to the XP fluxes according to stellar colors, magnitudes, and extinction. We use GaiaXPy to obtain calibrated spectra and apply FERRE to match the corrected XP spectra with models and infer atmospheric parameters. We train a neural network using stars in APOGEE to predict flux corrections as a function of wavelength for each target. Based on the comparison with APOGEE parameters, we conclude that our estimated parameters have systematic errors and uncertainties in $T_{\mathrm{eff}}$, $\log g$, and [M/H] about $-38 \pm 167$ K, $0.05 \pm 0.40$ dex, and $-0.12 \pm 0.19$ dex, respectively, for stars in the range $4000 \le T_{\mathrm{eff}} \le 7000$ K. The corrected XP spectra show better agreement with both models and Hubble Space Telescope CALSPEC data. Our correction increases the precision of the relative spectrophotometry of the XP data from $3.2\% - 3.7\%$ to $1.2\% - 2.4\%$. Finally, we have built a catalog of atmospheric parameters for stars within $4000 \le T_{\mathrm{eff}} \le 7000$ K, comprising $68,394,431$ sources, along with a subset of $124,188$ stars with $\mathrm{[M/H]} \le -2.5$. Our results confirm that the Gaia XP flux calibrated spectra show systematic patterns as a function of wavelength that are tightly related to colors, magnitudes, and extinction. Our optimization algorithm can give us accurate atmospheric parameters of stars with a clear and direct link to models of stellar atmospheres, and can be used to efficiently search for extremely metal-poor stars.
Reconstruction of the baryon acoustic oscillation (BAO) signal has been a standard procedure in BAO analyses over the past decade and has helped to improve the BAO parameter precision by a factor of ~2 on average. The Dark Energy Spectroscopic Instrument (DESI) BAO analysis for the first year (DR1) data uses the ``standard'' reconstruction framework, in which the displacement field is estimated from the observed density field by solving the linearized continuity equation in redshift space, and galaxy and random positions are shifted in order to partially remove nonlinearities. There are several approaches to solving for the displacement field in real survey data, including the multigrid (MG), iterative Fast Fourier Transform (iFFT), and iterative Fast Fourier Transform particle (iFFTP) algorithms. In this work, we analyze these algorithms and compare them with various metrics including two-point statistics and the displacement itself using realistic DESI mocks. We focus on three representative DESI samples, the emission line galaxies (ELG), quasars (QSO), and the bright galaxy sample (BGS), which cover the extreme redshifts and number densities, and potential wide-angle effects. We conclude that the MG and iFFT algorithms agree within 0.4% in post-reconstruction power spectrum on BAO scales with the RecSym convention, which does not remove large-scale redshift space distortions (RSDs), in all three tracers. The RecSym convention appears to be less sensitive to displacement errors than the RecIso convention, which attempts to remove large-scale RSDs. However, iFFTP deviates from the first two; thus, we recommend against using iFFTP without further development. In addition, we provide the optimal settings for reconstruction for five years of DESI observation. The analyses presented in this work pave the way for DESI DR1 analysis as well as future BAO analyses.
The Vera C. Rubin Observatory is due to commence the 10-year Legacy Survey of Space and Time (LSST) at the end of 2025. To detect transient/variable sources and identify solar system objects (SSOs), the processing pipelines require templates of the static sky to perform difference imaging. During the first year of the LSST, templates must be generated as the survey progresses, otherwise SSOs cannot be discovered nightly. The incremental template generation strategy has not been finalized; therefore, we use the Metric Analysis Framework (MAF) and a simulation of the survey cadence (one_snap_v4.0_10yrs}) to explore template generation in Year 1. We have assessed the effects of generating templates over timescales of days-weeks, when at least four images of sufficient quality are available for $\geq90\%$ of the visit. We predict that SSO discoveries will begin $\sim$2-3 months after the start of the survey. We find that the ability of the LSST to discover SSOs in real-time is reduced in Year 1. This is especially true for detections in areas of the sky that receive fewer visits, such as the North Ecliptic Spur (NES), and in less commonly used filters, such as the $u$ and $g$-bands. The lack of templates in the NES dominates the loss of real-time SSO discoveries; across the whole sky the MAF Main-Belt asteroid (MBA) discovery metric decreases by up to $63\%$ compared to the baseline observing strategy, whereas the metric decreases by up to $79\%$ for MBAs in the NES alone.
Globular cluster (GC) streams, debris of stars that tidally stripped from their progenitor GCs, have densities that correlate positively with the GC mass loss rate. In this work, we employ a novel particle spray algorithm that can accurately reproduce the morphology of streams of various orbital types, enabling us to uncover the relationship between the GC mass loss history and stream density profiles. Using recent discoveries of GC streams from Gaia DR3, we present, for the first time, direct measurement of mass loss rates for 12 Galactic GCs, ranging from 0.5 to 200 $\rm M_\odot\,Myr^{-1}$. By fitting power-law relations between mass loss rate and key GC properties, we identify positive correlations with GC mass and orbital frequency, consistent with the predictions from N-body simulations.