We report the discovery and characterization of three new transiting giant planets orbiting TOI-6628, TOI-3837 and TOI-5027, and one new warm sub-Saturn orbiting TOI-2328, whose transits events were detected in the lightcurves of the Transiting Exoplanet Survey Satellite \textbf{(TESS)} space mission. By combining TESS lightcurves with ground-based photometric and spectroscopic follow-up observations we confirm the planetary nature of the observed transits and radial velocity variations. TOI-6628~$b$ has a mass of 0.75$\pm$0.06~$M_\mathrm{J}$, a radius of 0.98$\pm$0.05~$R_J$ and is orbiting a metal-rich star with a period of 18.18424$\pm{0.00001}$ days and an eccentricity of 0.667$\pm0.016$, making it one of the most eccentric orbits of all known warm giants. TOI-3837~$b$ has a mass of 0.59$\pm$0.06~$M_\mathrm{J}$, a radius of 0.96$\pm$0.05~$R_J$ and orbits its host star every 11.88865$\pm$0.00003~days, with a moderate eccentricity of 0.198$^{+0.046}_{-0.058}$. With a mass of 2.01$\pm$0.13~$M_\mathrm{J}$ and a radius of 0.99$^{+0.07}_{-0.12}$ $R_J$, TOI-5027~$b$ orbits its host star in an eccentric orbit with $e$~=~0.395$^{+0.032}_{-0.029}$ every 10.24368$\pm{0.00001}$~days. TOI-2328~$b$ is a Saturn-like planet with a mass of 0.16$\pm$0.02~$M_\mathrm{J}$ and a radius of 0.89$\pm$0.04~$R_J$, orbiting its host star in a nearly circular orbit with $e$~=~0.057$^{+0.046}_{-0.029}$ at an orbital period of 17.10197$\pm{0.00001}$ days. All four planets have orbital periods above 10 days, and our planet interior structure models are consistsent a rocky-icy core with a H/He envelope, providing evidence supporting the core accretion model of planet formation for this kind of planets.
Ultra-light axion-like particles (ALPs) can be a viable solution to the dark matter problem. The scalar field associated with ALPs, coupled to the electromagnetic field, acts as an active birefringent medium, altering the polarisation properties of light through which it propagates. In particular, oscillations of the axionic field induce monochromatic variations of the plane of linearly polarised radiation of astrophysical signals. The radio emission of millisecond pulsars provides an excellent tool to search for such manifestations, given their high fractional linear polarisation and negligible fluctuations of their polarisation properties. We have searched for the evidence of ALPs in the polarimetry measurements of pulsars collected and preprocessed for the European Pulsar Timing Array (EPTA) campaign. Focusing on the twelve brightest sources in linear polarisation, we searched for an astrophysical signal from axions using both frequentist and Bayesian statistical frameworks. For the frequentist analysis, which uses Lomb-Scargle periodograms at its core, no statistically significant signal has been found. The model used for the Bayesian analysis has been adjusted to accommodate multiple deterministic systematics that may be present in the data. A statistically significant signal has been found in the dataset of multiple pulsars with common frequency between $10^{-8}$ Hz and $2\times10^{-8}$ Hz, which can most likely be explained by the residual Faraday rotation in the terrestrial ionosphere. Strong bounds on the coupling constant $g_{a\gamma}$, in the same ballpark as other searches, have been obtained in the mass range between $6\times10^{-24}$ eV and $5\times10^{-21}$ eV. We conclude by discussing problems that can limit the sensitivity of our search for ultra-light axions in the polarimetry data of pulsars, and possible ways to resolve them.
Context. Radio galaxies with visible two-sided jet structures, such as NGC 1052, are sources of particular interest to study the collimation and shock structure of active galactic nuclei jets. High-resolution very-long-baseline interferometry observations of such sources can resolve and study the jet collimation profile and probe different physical mechanisms. Aims. In this paper, we study the physics of double-sided radio sources at parsec scales, and in particular investigate whether propagating shocks can give rise to the observed asymmetry between jet and counterjet. Methods. We carry out special relativistic hydrodynamic simulations and perform radiative transfer calculations of an over-pressured perturbed jet. During the radiative transfer calculations we incorporate both thermal and nonthermal emission while taking the finite speed of light into account. To further compare our results to observations, we create more realistic synthetic data including the properties of the observing array as well as the image reconstruction via multifrequency regularized maximum likelihood methods. We finally introduce a semi-automatized method for tracking jet components and extracting jet kinematics. Results. We show that propagating shocks in an inherently symmetric double-sided jet can lead to partially asymmetric jet collimation profiles due to time delay effects and relativistic beaming. These asymmetries may appear on specific epochs, with one jet evolving near conically and the other one parabolically (width profile evolving with a slope of 1 and 0.5, respectively). However, these spurious asymmetries are not significant when observing the source evolve for an extended amount of time. Conclusions. Purely observational effects are not enough to explain a persisting asymmetry in the jet collimation profile of double-sided jet sources and hint at evidence for asymmetrically launched jets.
We present the MULTIMODAL UNIVERSE, a large-scale multimodal dataset of scientific astronomical data, compiled specifically to facilitate machine learning research. Overall, the MULTIMODAL UNIVERSE contains hundreds of millions of astronomical observations, constituting 100\,TB of multi-channel and hyper-spectral images, spectra, multivariate time series, as well as a wide variety of associated scientific measurements and "metadata". In addition, we include a range of benchmark tasks representative of standard practices for machine learning methods in astrophysics. This massive dataset will enable the development of large multi-modal models specifically targeted towards scientific applications. All codes used to compile the MULTIMODAL UNIVERSE and a description of how to access the data is available at this https URL
Neutral hydrogen (HI) intensity mapping (IM) presents great promise for future cosmological large-scale structure surveys. However, a major challenge for HIIM cosmological studies is to accurately subtract the foreground contamination. An accurate beam model is crucial for improving foreground subtraction accuracy. In this work, we develop a stacking-based beam reconstruction method utilizing the radio continuum point sources within the drift-scan field. Based on the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we employ two series of drift-scan survey data and merge the measurements to construct the beam patterns of the FAST L-band 19 feeds. To model the beams, we utilize the Zernike polynomial (ZP), which effectively captures % the side lobes and asymmetric features of the side lobes. asymmetric features of the main beam and the different side lobes. Due to the symmetric location of the beams, the main features of the beams are closely related to the distance from the center of the feed array, e.g., as the distance increases, side lobes become more pronounced. This modeling pipeline leverages the stable drift-scan data to extract beam patterns exclude the reflector's changing effects, and provides a more accurate measurement beam and a more precise model beam for FAST HIIM cosmology surveys.
Triple star systems are critical for understanding stellar dynamics and compact objects in astrophysics, yet confirmed hierarchical triples identified via spectroscopy remain limited. In this study, we identified 23 triple systems by cross-matching the Gaia DR3 non-single star catalog with LAMOST DR10 spectroscopic data; 18 of them are new discoveries. For two well-observed triples, we performed radial velocity curve fitting and light curve analysis to determine their orbital parameters, with inner and outer periods of 1.26 days and 656 days for one triple, and 3.42 days and 422 days for the other. We compared the results with other studies. We also analyzed the radial velocities (RVs) of these 23 triples, revealing a range of $V$ from approximately 40~km~s$^{-1}$ to 210~km~s$^{-1}$. Due to spectral resolution and detection limitations, velocity differences below 45~km~s$^{-1}$ in binaries and below 90~km~s$^{-1}$ in the inner binaries of triple systems are challenging to detect. Consequently, our detection range for inner orbital periods is restricted to 0.2--20 days, with the highest efficiency for periods under 10 days. These findings underscore the advantage of spectroscopic observations for identifying triple systems with short inner orbital periods.
In the last decade, we have been able to probe further down the galaxy luminosity function than ever before and expand into the regime of ultra-faint dwarfs (UFDs), which are some of the best probes we have of small-scale cosmology and galaxy formation. Digital sky surveys have enabled the discovery and study of these incredibly low-mass, highly dark-matter dominated systems around the Local Group, but it is critical that we expand the satellite census further out to understand if Milky Way and M31 satellites are representative of dwarf populations in the local Universe. Using data from HST/ACS, we present updated characterization of four satellite systems in the M81 group. These systems - D1005+68, D1006+69, DWJ0954+6821, and D1009+68 - were previously discovered using ground-based Subaru HSC data as overdensities in M81's halo and are now confirmed with HST/ACS by this work. These are all faint (M_V >= -7.9) and consistent with old (~13 Gyr), metal-poor ([M/H] < -1.5) populations. Each system possesses relatively unusual features - including one of the most concentrated satellite galaxies with a Sersic index of n ~ 5, one of the most elliptical galaxies outside the Local Group with an e ~ 0.6, and one of the most compact galaxies for its magnitude. Two of the satellites have very low surface brightness, lower than most known galaxies in this absolute magnitude range. This work previews the scientific promise of the upcoming Rubin Observatory and Roman Telescope for illuminating the diversity of UFDs in the Local Volume and beyond.