On the basis of a large collection of detailed 3D core-collapse supernova simulations carried to late times, we identify four channels of stellar mass black hole formation. Our examples for Channel 1 involve the formation of lower-gap and above black holes in energetic asymmetric supernova explosions. Our Channel 2 example involves a modest supernova explosion that may leave behind a lower-gap to $\sim$10 $M_{\odot}$ black hole. The latter may not be easily distinguishable from ``standard" supernovae that birth neutron stars. Our Channel 3 example experiences an aborted core-collapse explosion, more often in the context of a low-metallicity progenitor, whose residue is a black hole with a mass perhaps up to $\sim$40 $M_{\odot}$. The latter may be accompanied by a pulsational-pair instability supernova (PPISN). Channel 4 is the only quiescent or ``silent" scenario for which perhaps $\sim$5 to 15 $M_{\odot}$ black holes are left. Where appropriate, we estimate $^{56}$Ni yields, explosion energies, approximate recoil speeds, and residual black hole masses. The progenitor mass density and binding energy profiles at collapse influence the outcome in a systematic way. The statistics and prevalence of these various channels depend not only on still evolving supernova theory, but on remaining issues with the theory of massive star evolution, binary interaction, wind mass loss, metallicity, and the nuclear equation of state. Importantly, we suggest, but have not proven, that the silent channel for black hole formation may not be the dominant formation modality.
The earliest stages of star and cluster formation are hidden within dense cocoons of gas and dust, limiting their detection at optical wavelengths. With the unprecedented infrared capabilities of JWST, we can now observe dust-enshrouded star formation with $\sim$10 pc resolution out to $\sim$20 Mpc. Early findings from PHANGS-JWST suggest that 3.3 $\mu$m polycyclic aromatic hydrocarbon (PAH) emission can identify star clusters in their dust-embedded phases. Here, we extend this analysis to 19 galaxies from the PHANGS-JWST Cycle 1 Treasury Survey, providing the first characterization of compact sources exhibiting 3.3$\mu$m PAH emission across a diverse sample of nearby star-forming galaxies. We establish selection criteria, a median color threshold of F300M-F335M=0.67 at F335M=20, and identify of 1816 sources. These sources are predominantly located in dust lanes, spiral arms, rings, and galaxy centers, with $\sim$87% showing concentration indices similar to optically detected star clusters. Comparison with the PHANGS-HST catalogs suggests that PAH emission fades within $\sim$3 Myr. The H$\alpha$ equivalent width of PAH emitters is 1-2.8 times higher than that of young PHANGS-HST clusters, providing evidence that PAH emitters are on average younger. Analysis of the bright portions of luminosity functions (which should not suffer from incompleteness) shows that young dusty clusters may increase the number of optically visible $\leq$ 3 Myr-old clusters in PHANGS-HST by a factor between $\sim$1.8x-8.5x.
We present the study of seven systems, three of which TOI-2295, TOI-2537, and TOI-5110 are newly discovered planetary systems. Through the analysis of TESS photometry, SOPHIE radial velocities, and high-spatial resolution imaging, we found that TOI-2295b, TOI-2537b, and TOI-5110b are transiting warm Jupiters with orbital periods ranging from 30 to 94 d, masses between 0.9 and 2.9 MJ, and radii ranging from 1.0 to 1.5 RJ. Both TOI-2295 and TOI-2537 each harbor at least one additional, outer planet. Their outer planets TOI-2295c and TOI-2537c are characterized by orbital periods of 966.5 +/- 4.3 and 1920^{+230}_{-140} d, respectively, and minimum masses of 5.61^{+0.23}_{-0.24} and 7.2 +/- 0.5 MJ, respectively. We also investigated and characterized the two recently reported warm Jupiters TOI-1836b and TOI-5076b, which we independently detected in SOPHIE RVs. Additionally, we study the planetary candidates TOI-4081.01 and TOI-4168.01. For TOI-4081.01, despite our detection in radial velocities, we cannot rule out perturbation by a blended eclipsing binary and thus exercise caution regarding its planetary nature. On the other hand, we identify TOI-4168.01 as a firm false positive. Finally, we highlight interesting characteristics of these new planetary systems. The transits of TOI-2295b are highly grazing, with an impact parameter of 1.056$^{+0.063}_{-0.043}$. TOI-2537b, in turn, is a temperate Jupiter with an effective temperature of 307+/-15 K and can serve as a valuable low-irradiation control for models of hot Jupiter inflation anomalies. We also detected significant transit timing variations (TTVs) for TOI-2537b, which are likely caused by gravitational interactions with the outer planet TOI-2537c. Finally, TOI-5110b stands out due to its orbital eccentricity of 0.75+/- 0.03, one of the highest planetary eccentricities discovered thus far.