We report the validation of multiple planets transiting the nearby ($d = 12.8$ pc) K5V dwarf HD 101581 (GJ 435, TOI-6276, TIC 397362481). The system consists of at least two Earth-size planets whose orbits are near a mutual 4:3 mean-motion resonance, HD 101581 b ($R_{p} = 0.956_{-0.061}^{+0.063}~R_{\oplus}$, $P = 4.47$ days) and HD 101581 c ($R_{p} = 0.990_{-0.070}^{+0.070}~R_{\oplus}$, $P = 6.21$ days). Both planets were discovered in Sectors 63 and 64 TESS observations and statistically validated with supporting ground-based follow-up. We also identify a signal that probably originates from a third transiting planet, TOI-6276.03 ($R_{p} = 0.982_{-0.098}^{+0.114}~R_{\oplus}$, $P = 7.87$ days). These planets are remarkably uniform in size and their orbits are evenly spaced, representing a prime example of the "peas-in-a-pod" architecture seen in other compact multi-planet systems. At $V = 7.77$, HD 101581 is the brightest star known to host multiple transiting planets smaller than $1.5~R_{\oplus}$. HD 101581 is a promising system for atmospheric characterization and comparative planetology of small planets.
Shock waves from supernova remnants (SNRs) have strong influence on the physical and chemical properties of molecular clouds (MCs). Shocks propagating into magnetized MCs can be classified into "jump" J-shock and "continuous" C-shock. The molecular chemistry in the re-formed molecular gas behind J-shock is still not well understood, which will provide a comprehensive view of the chemical feedback of SNRs and the chemical effects of J-shock. We conducted a W-band (71.4-89.7 GHz) observation toward a re-formed molecular clump behind a J-shock induced by SNR W51C with the Yebes 40 m radio telescope to study the molecular chemistry in the re-formed molecular gas. Based on the local thermodynamic equilibrium (LTE) assumption, we estimate the column densities of HCO+, HCN, C2H and o-c-C3H2, and derive the maps of their abundance ratios with CO. The gas density is constrained by non-LTE analysis of the HCO+ J=1-0 line. We obtain the following abundance ratios: $N({\rm HCO^+})/N({\rm CO})\sim (1.0\text{--}4.0)\times 10^{-4}$, $N({\rm HCN})/N({\rm CO})\sim (1.8\text{--}5.3)\times 10^{-4}$, $N({\rm C_2H})/N({\rm CO})\sim (1.6\text{--}5.0)\times 10^{-3}$, and $N({o\text{-}c\text{-}{\rm C_3H_2}})/N({\rm CO})\sim (1.2\text{--}7.9)\times 10^{-4}$. The non-LTE analysis suggests that the gas density is $n_{\rm H_2}\gtrsim 10^4\rm \ cm^{-3}$. We find that the N(C2H)/N(CO) and N(o-c-C3H2)/N(CO) are higher than typical values in quiescent MCs and shocked MCs by 1-2 orders of magnitude, which can be qualitatively attributed to the abundant C+ and C at the earliest phase of molecular gas re-formation. The Paris-Durham shock code can reproduce, although not perfectly, the observed abundance ratios, especially the enhanced N(C2H)/N(CO) and N(o-c-C3H2)/N(CO), with J-shocks propagating in to both non-irradiated and irradiated molecular gas with a preshock density of $n_{\rm H}=2\times 10^3\rm \ cm^{-3}$.
We present a novel method for systematically assessing the impact of central potential fluctuations associated with bursty outflows on the structure of dark matter halos for dwarf and ultra-faint galaxies. Specifically, we use dark-matter-only simulations augmented with a manually-added massive particle that modifies the central potential and approximately accounts for a centrally-concentrated baryon component. This approach enables precise control over the magnitude, frequency, and timing of when rapid outflow events occur. We demonstrate that this method can reproduce the established result of core formation for systems that undergo multiple episodes of bursty outflows. In contrast, we also find that equivalent models that undergo only a single (or small number of) burst episodes do not form cores with the same efficacy. This is important because many ultra-faint dwarf (UFD) galaxies in the local universe are observed to have tightly constrained star formation histories that are best described by a single, early burst of star formation. Using a suite of cosmological, zoom-in simulations, we identify the regimes in which single bursts can and cannot form a cored density profile, and therefore, can or cannot resolve the core-cusp problem.
this https URL ). Version accepted for publication in A&A
this https URL , video abstract at this https URL