Broadband spectroscopic observations with high sensitivity provide an unbiased way to detect emissions of molecules in space. We present deep observations from ~ 105.8 GHz to 113.6 GHz toward 50 Galactic massive star-forming regions using IRAM 30-m millimeter telescope, with noise levels ranging from 6 to 29 at frequency channel spacing of 195 kHz, which corresponds to ~ 0.54 km/s at 110 GHz. Totally, 27 molecular species have been identified, of which 16 are complex organic molecules. The related parameters, such as peak temperature, integrated intensity, and line width of the identified molecular lines were obtained. The line widths of the chemically related molecules show strong positive correlations, suggesting they likely originate from similar gases within star-forming regions. This work highlights the fundamental properties of the detected molecular lines and offers a valuable dataset for further studies on the astrochemical evolution of molecules in massive star-forming cores.
Molecular gas, as the fuel for star formation, and its relationship with atomic gas are crucial for understanding how galaxies regulate their star forming (SF) activities. We conducted IRAM 30m observations of 23 nearby spiral galaxies from the CHANG-ES project to investigatet the distribution of molecular gas and the Kennicutt-Schmidt law. Combining these results with atomic gas masses from previous studies, we aim to investigate the scaling relations that connect the molecular and atomic gas masses with stellar masses and the baryonic Tully-Fisher relation. Based on spatially resolved observations of the three CO lines, we calculated the total molecular gas masses, the ratios between different CO lines, and derived physical parameters such as temperature and optical depth. The median line ratios for nuclear/disk regions are 8.6/6.1 (^{12}\mathrm{CO}/^{13}\mathrm{CO}\ J=1{-}0) and 0.53/0.39 (^{12}\mathrm{CO}\ J=2{-}1/J=1{-}0). Molecular gas mass derived from ^{13}\mathrm{CO} is correlated but systematically lower than that from ^{12}\mathrm{CO}. Most galaxies follow the spatially resolved SF scaling relation with a median gas depletion timescale of approximately 1 Gyr, while a few exhibit shorter timescales of approximately 0.1 Gyr. The molecular-to-atomic gas mass ratio correlates strongly with stellar mass, consistent with previous studies. Galaxies with lower stellar masses show an excess of atomic gas, indicating less efficient conversion to molecular gas. Most galaxies tightly follow the baryonic Tully-Fisher relation, but NGC 2992 and NGC 4594 deviate from the relation due to different physical factors. We find that the ratio of the cold gas (comprising molecular and atomic gas) to the total baryon mass decreases with the gravitational potential of the galaxy, as traced by rotation velocity, which could be due to gas consumption in SF or being heated to the hot phase.
We use the angular cross-correlation between a Luminous Red Galaxy (LRG) sample from the DR9 DESI Legacy Survey and the $Planck$ PR4 CMB lensing maps to constrain the local primordial non-Gaussianity parameter $f_{\rm NL}$ using the scale-dependent galaxy bias effect. The galaxy sample covers $\sim$ 40% of the sky and contains galaxies up to $z \sim 1.4$, and is calibrated with the LRG spectra that have been observed for the DESI Survey Validation. We apply a nonlinear imaging systematics treatment based on neural networks to remove observational effects that could potentially bias the $f_{\rm NL}$ measurement. Our measurement is performed without blinding, but the full analysis pipeline is tested with simulations including systematics. Using the two-point angular cross-correlation between LRG and CMB lensing only ($C_\ell^{\kappa G}$) we find $f_{\rm NL} = 39_{-38}^{+40}$ at 68% confidence level, and our result is robust in terms of systematics and cosmology assumptions. If we combine this information with the autocorrelation of LRG ($C_\ell^{GG}$) applying a $\ell_{\rm min}$ scale cut to limit the impact of systematics, we find $f_{\rm NL} = 24_{-21}^{+20}$ at 68% confidence level. Our results motivate the use of CMB lensing cross-correlations for measuring $f_{\rm NL}$ with future datasets given its stability in terms of observational systematics compared to the angular auto-correlation.