Radiation pressure is a key mechanism by which stellar feedback disrupts molecular clouds and drives HII region expansion. This includes direct radiation pressure exerted by UV photons on dust grains, pressure associated with photoionization, and infrared (IR) radiation pressure on grains due to dust-reprocessed IR photons. We present a new method that combines high resolution mid-IR luminosities from JWST-MIRI, optical attenuation and nebular line measurements from VLT-MUSE, and HST H$\alpha$-based region sizes to estimate the strength of radiation pressure in $\approx 18,000$ HII regions across 19 nearby star-forming galaxies. This is the most extensive and direct estimate of these terms beyond the Local Group to date. In the disks of galaxies, we find that the total reprocessed IR pressure is on average 5% of the direct UV radiation pressure. This fraction rises to 10% in galaxy centers. We expect reprocessed IR radiation pressure to dominate over UV radiation pressure in regions where $L_{\rm F2100W}/L_{\rm H\alpha}^{\rm corr} \gtrsim 75$. Radiation pressure due to H ionizations is lower than pressure on dust in our sample, but appears likely to dominate the radiation pressure budget in dwarf galaxies similar to the Small Magellanic Cloud. The contribution from all radiation pressure terms appears to be subdominant compared to thermal pressure from ionized gas, reinforcing the view that radiation pressure is most important in compact, heavily embedded, and young regions.
Interplanetary Coronal Mass Ejections (ICMEs) are the primary sources of geomagnetic storms at Earth. Negative out-of-ecliptic component (Bz) of magnetic field in the ICME or its associated sheath region is necessary for it to be geo-effective. For this reason, magnetohydrodynamic simulations of CMEs containing data-constrained flux ropes are more suitable for forecasting their geo-effectiveness as compared to hydrodynamic models of the CME. ICMEs observed in situ by radially aligned spacecraft can provide an important setup to validate the physics-based heliospheric modeling of CMEs. In this work, we use the constant-turn flux rope (CTFR) model to study an ICME that was observed in situ by Solar Orbiter (SolO) and at Earth, when they were in a near-radial alignment. This was a stealth CME that erupted on 2020 April 14 and reached Earth on 2020 April 20 with a weak shock and a smoothly rotating magnetic field signature. We found that the CTFR model was able to reproduce the rotating magnetic field signature at both SolO and Earth with very good accuracy. The simulated ICME arrived 5 hours late at SolO and 5 hours ahead at Earth, when compared to the observed ICME. We compare the propagation of the CME front through the inner heliosphere using synthetic J-maps and those observed in the heliospheric imager data and discuss the role of incorrect ambient SW background on kinematics of the simulated CME. This study supports the choice of the CTFR model for reproducing the magnetic field of ICMEs.
Measuring the properties of planets younger than about 50 Myr helps to test different planetary formation and evolution models. NASA's Transiting Exoplanet Survey Satellite (TESS) has observed nearly the entire sky, including a wide range of star-forming regions and young stellar clusters, expanding our census of the newborn planet population. In this work, we present the discovery of the TIC 88785435 planetary system located in the Upper-Centaurus Lupus (UCL) region of the Scorpius-Centaurus OB association (Sco-Cen) and a preliminary survey of the planet population within Sco-Cen. TIC 88785435 is a pre-main sequence, K7V dwarf ($M_\star = 0.72M_\odot$, $R_\star = 0.91R_\odot$, $T_\mathrm{eff}$ = 3998K, V = 11.7 mag) located within the bounds of UCL. We investigate the distribution of rotation periods measured from the TESS long-cadence data and the Halpha and Li abundances from the spectra of TIC 88785435. TESS long-candence data reveal that TIC 88785435 hosts a transiting super-Neptune ($R_b = 5.03R_\oplus$, P = 10.51 days), TIC 88785435 b. Ground-based follow-up validates the planetary nature of TIC 88785435 b. Using the TESS data, we perform a preliminary survey to investigate how TIC 88785435 b compares to the population of newly born planets located within Sco-Cen.
The formation of compact binary systems is largely driven by their evolution through a common envelope (CE) phase, crucial for understanding phenomena such as type Ia supernovae and black hole mergers. Despite their importance, direct observational evidence for CE material has been elusive due to the transient nature of these envelopes. Numerical simulations suggest that some envelope material may persist post-ejection. In this study, we investigate circumstellar material (CSM) surrounding hot subdwarf (sdB) stars, focusing on material ejected during the CE phase of binary evolution. We analyze Ca II K absorption lines in 727 sdB candidates from the LAMOST-LRS survey, selecting 145 stars with strong absorption features, indicating the presence of CSM. We compare the velocities of the Ca II K lines with the systemic velocities of sdB binaries, confirming that the material originates from ejected common-envelope material. The results show that the CSM persists long after the CE event, suggesting the formation of a stable, long-lived circumstellar environment around sdB stars. This study enhances our understanding of the role of CSM in post-CE evolution and provides new insights into the physical processes shaping the evolution of sdB binaries.
We present a transfer function-based method to estimate angular power spectra from filtered maps for cosmic microwave background (CMB) surveys. This is especially relevant for experiments targeting the faint primordial gravitational wave signatures in CMB polarisation at large scales, such as the Simons Observatory (SO) small aperture telescopes. While timestreams can be filtered to mitigate the contamination from low-frequency noise, usual methods that calculate the mode coupling at individual multipoles can be challenging for experiments covering large sky areas or reaching few-arcminute resolution. The method we present here, although approximate, is more practical and faster for larger data volumes. We validate it through the use of simulated observations approximating the first year of SO data, going from half-wave plate-modulated timestreams to maps, and using simulations to estimate the mixing of polarisation modes induced by an example of time-domain filtering. We show its performance through an example null test and with an end-to-end pipeline that performs inference on cosmological parameters, including the tensor-to-scalar ratio $r$. The performance demonstration uses simulated observations at multiple frequency bands. We find that the method can recover unbiased parameters for our simulated noise levels.
We present the first asteroseismic analysis of the K3\,V planet host HD~219134, based on four consecutive nights of radial velocities collected with the Keck Planet Finder. We applied Gold deconvolution to the power spectrum to disentangle modes from sidelobes in the spectral window, and extracted 25 mode frequencies with spherical degrees $0\leq\ell\leq3$. We derive the fundamental properties using five different evolutionary-modeling pipelines and report a mass of 0.763 $\pm$ 0.020 (stat) $\pm$ 0.007 (sys) M$_\odot$, a radius of 0.748 $\pm$ 0.007 (stat) $\pm$ 0.002 (sys) R$_\odot$, and an age of 10.151 $\pm$ 1.520 (stat) $\pm$ 0.810 (sys) Gyr. Compared to the interferometric radius 0.783 $\pm$ 0.005~R$_\odot$, the asteroseismic radius is 4\% smaller at the 4-$\sigma$ level -- a discrepancy not easily explained by known interferometric systematics, modeling assumptions on atmospheric boundary conditions and mixing lengths, magnetic fields, or tidal heating. HD~219134 is the first main-sequence star cooler than 5000~K with an asteroseismic age estimate and will serve as a critical calibration point for stellar spin-down relations. We show that existing calibrated prescriptions for angular momentum loss, incorporating weakened magnetic braking with asteroseismically constrained stellar parameters, accurately reproduce the observed rotation period. Additionally, we revised the masses and radii of the super-Earths in the system, which support their having Earth-like compositions. Finally, we confirm that the oscillation amplitude in radial velocity scales as $(L/M)^{1.5}$ in K dwarfs, in contrast to the $(L/M)^{0.7}$ relation observed in G dwarfs. These findings provide significant insights into the structure and angular momentum loss of K-type stars.
We present a comprehensive analysis of the X-ray observations obtained from \xmm\, and \chandra\, for a sample of bona-fide Compact Symmetric Objects (CSOs) to investigate their X-ray emission properties. Ultimately, we obtain 32 effective X-ray observational spectra from 17 CSOs. Most spectra can be well described by an absorbed single power-law model, with the exception of 6 spectra requiring an additional component in the soft X-ray band and 2 spectra exhibiting an iron emission line component. The data analysis results unveil the diverse characteristics of X-ray emission from CSOs. The sample covers X-ray luminosity ranging within $10^{40}-10^{45}$ erg s$^{-1}$, intrinsic absorbing column density ($N_{\rm H}^{\rm int}$) ranging within $10^{20}-10^{23}$ cm$^{-2}$, and photon spectral index ($\Gamma_{\rm X}$) ranging within 0.75--3.0. None of the CSOs in our sample have $N_{\rm H}^{\rm int}$ > $10^{23}\rm~cm^{-2}$, indicating that the X-ray emission in these CSOs is not highly obscured. The distribution of $\Gamma_{\rm X}$ for these CSOs closely resembles that observed in a sample of radio-loud quasars and low-excitation radio galaxies (RGs). In the radio--X-ray luminosity panel, these CSOs exhibit a distribution more akin to FR I RGs than FR II RGs, characterized by higher luminosities. The positive correlation between $\Gamma_{\rm X}$ and the Eddington ratio, which has been noted in radio-quiet active galactic nuclei, is not observed in these CSOs. These findings suggest that although the contribution of the disk-corona system cannot be completely ruled out, jet/lobe radiation likely plays a dominant role in the X-ray emission of these CSOs.