A systematic torque from anisotropic radiation can rapidly spin up irregular grains to the point of breakup. We apply the standard theory of rotational disruption from radiative torques to solar system grains, finding that grains with radii $\sim$0.03 --3 $\mu$m at 1 a.u. from the Sun are spun to the point of breakup on timescales $\lesssim1$ yr even when assuming them to have an unrealistically high tensile strength of pure meteoritic iron. Such a rapid disruption timescale is incompatible with both the abundance of micron-sized grains detected in the inner solar system and with the low production rate of $\beta$ meteoroids. We suggest the possibility that zodiacal grains have a strong propensity to attain rotational equilibrium at low angular velocity (a so-called low-$J$ attractor) and that the efficacy of rotational disruption in the Solar System -- and likely elsewhere -- has been greatly overestimated.
We introduce an updated To&Krause2021 model for joint analyses of cluster abundances and large-scale two-point correlations of weak lensing and galaxy and cluster clustering (termed CL+3x2pt analysis) and validate that this model meets the systematic accuracy requirements of analyses with the statistical precision of the final Dark Energy Survey (DES) Year 6 (Y6) dataset. The validation program consists of two distinct approaches, (1) identification of modeling and parameterization choices and impact studies using simulated analyses with each possible model misspecification (2) end-to-end validation using mock catalogs from customized Cardinal simulations that incorporate realistic galaxy populations and DES-Y6-specific galaxy and cluster selection and photometric redshift modeling, which are the key observational systematics. In combination, these validation tests indicate that the model presented here meets the accuracy requirements of DES-Y6 for CL+3x2pt based on a large list of tests for known systematics. In addition, we also validate that the model is sufficient for several other data combinations: the CL+GC subset of this data vector (excluding galaxy--galaxy lensing and cosmic shear two-point statistics) and the CL+3x2pt+BAO+SN (combination of CL+3x2pt with the previously published Y6 DES baryonic acoustic oscillation and Y5 supernovae data).
this https URL on 3/19
Galaxy clusters provide a unique probe of the late-time cosmic structure and serve as a powerful independent test of the $\Lambda$CDM model. This work presents the first set of cosmological constraints derived with ~16,000 optically selected redMaPPer clusters across nearly 5,000 $\rm{deg}^2$ using DES Year 3 data sets. Our analysis leverages a consistent modeling framework for galaxy cluster cosmology and DES-Y3 joint analyses of galaxy clustering and weak lensing (3x2pt), ensuring direct comparability with the DES-Y3 3x2pt analysis. We obtain constraints of $S_8 = 0.864 \pm 0.035$ and $\Omega_{\rm{m}} = 0.265^{+0.019}_{-0.031}$ from the cluster-based data vector. We find that cluster constraints and 3x2pt constraints are consistent under the $\Lambda$CDM model with a Posterior Predictive Distribution (PPD) value of $0.53$. The consistency between clusters and 3x2pt provides a stringent test of $\Lambda$CDM across different mass and spatial scales. Jointly analyzing clusters with 3x2pt further improves cosmological constraints, yielding $S_8 = 0.811^{+0.022}_{-0.020}$ and $\Omega_{\rm{m}} = 0.294^{+0.022}_{-0.033}$, a $24\%$ improvement in the $\Omega_{\rm{m}}-S_8$ figure-of-merit over 3x2pt alone. Moreover, we find no significant deviation from the Planck CMB constraints with a probability to exceed (PTE) value of $0.6$, significantly reducing previous $S_8$ tension claims. Finally, combining DES 3x2pt, DES clusters, and Planck CMB places an upper limit on the sum of neutrino masses of $\sum m_\nu < 0.26$ eV at 95% confidence under the $\Lambda$CDM model. These results establish optically selected clusters as a key cosmological probe and pave the way for cluster-based analyses in upcoming Stage-IV surveys such as LSST, Euclid, and Roman.
How many simulations do we need to train machine learning methods to extract information available from summary statistics of the cosmological density field? Neural methods have shown the potential to extract non-linear information available from cosmological data. Success depends critically on having sufficient simulations for training the networks and appropriate network architectures. In the first detailed convergence study of neural network training for cosmological inference, we show that currently available simulation suites, such as the Quijote Latin Hypercube(LH) with 2000 simulations, do not provide sufficient training data for a generic neural network to reach the optimal regime, even for the dark matter power spectrum, and in an idealized case. We discover an empirical neural scaling law that predicts how much information a neural network can extract from a highly informative summary statistic, the dark matter power spectrum, as a function of the number of simulations used to train the network, for a wide range of architectures and hyperparameters. We combine this result with the Cramer-Rao information bound to forecast the number of training simulations needed for near-optimal information extraction. To verify our method we created the largest publicly released simulation data set in cosmology, the Big Sobol Sequence(BSQ), consisting of 32,768 $\Lambda$CDM n-body simulations uniformly covering the $\Lambda$CDM parameter space. Our method enables efficient planning of simulation campaigns for machine learning applications in cosmology, while the BSQ dataset provides an unprecedented resource for studying the convergence behavior of neural networks in cosmological parameter inference. Our results suggest that new large simulation suites or new training approaches will be necessary to achieve information-optimal parameter inference from non-linear simulations.
Acetone (CH3COCH3) is one of the most abundant three-carbon oxygen-bearing complex organic molecules (O-COMs) that have been detected in space. Recently, acetone ice has been reported as (tentatively) detected toward B1-c, which enables the gas-to-ice comparison of its abundances. The detection of acetone ice warrants a more systematic study of its gaseous abundances which is currently lacking. Therefore, we conducted systematic measurements of acetone gas in a dozen hot cores observed by the CoCCoA survey and investigate the chemical evolution from ice to gas of acetone in protostellar systems. We fit the ALMA spectra to determined the column density, excitation temperature, and line width of acetone, along with propanal (C2H5CHO), ketene (CH2CO), and propyne (CH3CCH), which might be chemically linked with acetone. We found that the observed gas abundances of acetone are surprisingly high compared to those of two-carbon O-COMs, while aldehydes are overall less abundant than other O-COMs (e.g., alcohols, ethers, and esters). This may suggest specific formation or destruction mechanisms that favor the production of ethers, esters, and ketones over aldehydes. The derived physical properties suggest that acetone, propanal, and ketene have the same origin from hot cores as other O-COMs, while propyne tends to trace the more extended outflows. The acetone-to-methanol ratios are higher in ice than in gas by one order of magnitude, hinting at gas-phase reprocessing after sublimation. There are several suggested formation pathways of acetone (in both ice and gas) from acetaldehyde (CH3CHO), ketene, and propylene (C3H6). The observed ratios between acetone and the relevant species are rather constant across the sample, and can be well reproduced by astrochemical simulations, but more investigations are needed to draw solid conclusions.
We present Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) maps of the Cosmic Microwave Background temperature and polarization anisotropy at arcminute resolution over three frequency bands centered on 98, 150 and 220 GHz. The maps are based on data collected with the AdvancedACT camera over the period 2017--2022 and cover 19,000 square degrees with a median combined depth of 10 uK arcmin. We describe the instrument, mapmaking and map properties and illustrate them with a number of figures and tables. The ACT DR6 maps and derived products are available on LAMBDA at this https URL. We also provide an interactive web atlas at this https URL and HiPS data sets in Aladin (e.g. this https URL).
this https URL . Code located at this https URL
We present power spectra of the cosmic microwave background (CMB) anisotropy in temperature and polarization, measured from the Data Release 6 maps made from Atacama Cosmology Telescope (ACT) data. These cover 19,000 deg$^2$ of sky in bands centered at 98, 150 and 220 GHz, with white noise levels three times lower than Planck in polarization. We find that the ACT angular power spectra estimated over 10,000 deg$^2$, and measured to arcminute scales in TT, TE and EE, are well fit by the sum of CMB and foregrounds, where the CMB spectra are described by the $\Lambda$CDM model. Combining ACT with larger-scale Planck data, the joint P-ACT dataset provides tight limits on the ingredients, expansion rate, and initial conditions of the universe. We find similar constraining power, and consistent results, from either the Planck power spectra or from ACT combined with WMAP data, as well as from either temperature or polarization in the joint P-ACT dataset. When combined with CMB lensing from ACT and Planck, and baryon acoustic oscillation data from the Dark Energy Spectroscopic Instrument (DESI Y1), we measure a baryon density of $\Omega_b h^2=0.0226\pm0.0001$, a cold dark matter density of $\Omega_c h^2=0.118\pm0.001$, a Hubble constant of $H_0=68.22\pm0.36$ km/s/Mpc, a spectral index of $n_s=0.974\pm0.003$, and an amplitude of density fluctuations of $\sigma_8=0.813\pm0.005$. We find no evidence for excess lensing in the power spectrum, and no departure from spatial flatness. The contribution from Sunyaev-Zel'dovich (SZ) anisotropy is detected at high significance; we find evidence for a tilt with suppressed small-scale power compared to our baseline SZ template spectrum, consistent with hydrodynamical simulations with feedback.
We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as in combination with legacy data from Planck. To break geometric degeneracies, we include ACT and Planck CMB lensing data and baryon acoustic oscillation data from DESI Year-1, and further add supernovae measurements from Pantheon+ for models that affect the late-time expansion history. We verify the near-scale-invariance (running of the spectral index $d n_s/d\ln k = 0.0062 \pm 0.0052$) and adiabaticity of the primordial perturbations. Neutrino properties are consistent with Standard Model predictions: we find no evidence for new light, relativistic species that are free-streaming ($N_{\rm eff} = 2.86 \pm 0.13$, which combined with external BBN data becomes $N_{\rm eff} = 2.89 \pm 0.11$), for non-zero neutrino masses ($\sum m_\nu < 0.082$ eV at 95% CL), or for neutrino self-interactions. We also find no evidence for self-interacting dark radiation ($N_{\rm idr} < 0.134$), early-universe variation of fundamental constants, early dark energy, primordial magnetic fields, or modified recombination. Our data are consistent with standard BBN, the FIRAS-inferred CMB temperature, a dark matter component that is collisionless and with only a small fraction allowed as axion-like particles, a cosmological constant, and the late-time growth rate predicted by general relativity. We find no statistically significant preference for a departure from the baseline $\Lambda$CDM model. In general, models introduced to increase the Hubble constant or to decrease the amplitude of density fluctuations inferred from the primary CMB are not favored by our data.
[Abridged] Cassiopeia A (Cas A) provides a unique opportunity to study supernova (SN) dynamics and interactions with the circumstellar medium (CSM). Recent JWST observations revealed the "Green Monster" (GM), a structure with a likely CSM origin. We investigate its pockmarked morphology, characterized by circular holes and rings, by examining the role of small-scale ejecta structures interacting with a dense circumstellar shell. We adopted a neutrino-driven SN model to trace the evolution of its explosion from core collapse to the age of the Cas A remnant using high-resolution 3D magnetohydrodynamic simulations. Besides other processes, the simulations include self-consistent calculations of radiative losses, accounting for deviations from electron-proton temperature equilibration and ionization equilibrium, as well as the ejecta composition derived from the SN. The GM's morphology is reproduced by dense ejecta clumps and fingers interacting with an asymmetric, forward-shocked circumstellar shell. The clumps and fingers form by hydrodynamic instabilities growing at the interface between SN ejecta and shocked CSM. Radiative cooling accounting for effects of non-equilibrium of ionization enhances the ejecta fragmentation, forming dense knots and thin filamentary structures that penetrate the shell, producing a network of holes and rings with properties similar to those observed. The origin of the holes and rings in the GM can be attributed to the interaction of ejecta with a shocked circumstellar shell. By constraining the timing of this interaction and analyzing the properties of these structures, we provide a distinction of this scenario from an alternative hypothesis, which attributes these features to fast-moving ejecta knots penetrating the shell ahead of the forward shock.
this https URL . 32 pages, 16 figures, 4 appendices, 3 tables