this https URL . See De Graaff et al. in today's arXiv posting for a z=3.5 BH*. Comments greatly appreciated and warmly welcomed!
The physical processes that led to the formation of billion solar mass black holes within the first 700 million years of cosmic time remain a puzzle. Several theoretical scenarios have been proposed to seed and rapidly grow black holes, but direct observations of these mechanisms remain elusive. Here we present a source 660 million years after the Big Bang that displays singular properties: among the largest Hydrogen Balmer breaks reported at any redshift, broad multi-peaked H$\beta$ emission, and Balmer line absorption in multiple transitions. We model this source as a "black hole star" (BH*) where the Balmer break and absorption features are a result of extremely dense, turbulent gas forming a dust-free "atmosphere" around a supermassive black hole. This source may provide evidence of an early black hole embedded in dense gas -- a theoretical configuration proposed to rapidly grow black holes via super-Eddington accretion. Radiation from the BH* appears to dominate almost all observed light, leaving limited room for contribution from its host galaxy. We demonstrate that the recently discovered "Little Red Dots" (LRDs) with perplexing spectral energy distributions can be explained as BH*s embedded in relatively brighter host galaxies. This source provides evidence that black hole masses in the LRDs may be over-estimated by orders of magnitude -- the BH* is effectively dust-free contrary to the steep dust corrections applied while modeling LRDs, and the physics that gives rise to the complex line shapes and luminosities may deviate from assumptions underlying standard scaling relations.
The origin of the rest-optical emission of compact, red, high-redshift sources known as `little red dots' (LRDs) poses a major puzzle. If interpreted as starlight, it would imply that LRDs would constitute the densest stellar systems in the Universe. However, alternative models suggest active galactic nuclei (AGN) may instead power the rest-optical continuum. Here, we present JWST/NIRSpec, NIRCam and MIRI observations from the RUBIES and PRIMER programs of The Cliff: a bright LRD at $z=3.55$ with an exceptional Balmer break, twice as strong as that of any high-redshift source previously observed. The spectra also reveal broad Hydrogen (H$\alpha\ \rm FWHM\sim1500$km/s) and He I emission, but no significant metal lines. We demonstrate that massive evolved stellar populations cannot explain the observed spectrum, even when considering unusually steep and strong dust attenuation, or reasonable variations in the initial mass function. Moreover, the formally best-fit stellar mass and compact size ($M_*\sim10^{10.5}\,M_\odot,\ r_{e}\sim40\,$pc) would imply densities at which near-monthly stellar collisions might lead to significant X-ray emission. We argue that the Balmer break, emission lines, and H$\alpha$ absorption line are instead most plausibly explained by a `black hole star' (BH*) scenario, in which dense gas surrounds a powerful ionising source. In contrast to recently proposed BH* models of dust-reddened AGN, we show that spectral fits in the rest UV to near-infrared favour an intrinsically redder continuum over strong dust reddening. This may point to a super-Eddington accreting massive black hole or, possibly, the presence of (super)massive stars in a nuclear star cluster. The Cliff is the clearest evidence to date that at least some LRDs are not ultra-dense, massive galaxies, and are instead powered by a central ionising source embedded in dense, absorbing gas.
The thermal fluctuation spectrum of the electric field arising due to particle noise in a quiescent Vlasov-Poisson plasma was derived in the 1960s. Here, we derive the universal fluctuation spectrum of the electric field, at Debye and sub-Debye scales, for a turbulent Vlasov-Poisson plasma. This spectrum arises from what is likely to be the final cascade - a universal regime to be encountered at the extreme small-scale end of any turbulent cascade in a nearly collisionless plasma. The cascaded invariant is $C_2$, the quadratic Casimir invariant of the particle distribution function. $C_2$ cascades to small scales in position and velocity space via linear and nonlinear phase mixing, in such a way that the time scales of the two processes are critically balanced at every scale. We construct a scaling theory of the fluctuation spectrum of $C_2$ and of the electric field in wavenumber space. The electric-field spectrum is sufficiently steep for the nonlinear mixing to be controlled by the largest-scale electric fields, and so the $C_2$ cascade resembles the Batchelor cascade of a passive scalar. Our theory is supported by simulations of a forced 1D-1V plasma. We predict that the cascade is terminated at the wavenumber where the turbulent electric-field spectrum gives way to the thermal noise spectrum. The time scale for this small-scale cutoff to be reached is the dynamical time of phase-space mixing times a logarithmic factor in the plasma parameter - this is the first concrete demonstration of this property of Vlasov-Poisson turbulence, akin to how fluid turbulence dissipates energy at a rate independent (or nearly independent) of molecular diffusion. In the presence of the sub-Debye phase-space cascade - a scenario that may be ubiquitous - standard collisional plasma theory ceases to be valid. This calls for the development of new collision operators suited to such turbulent environments.
We examine the star cluster populations in the three nearby galaxies IC 342, NGC 2403, and Holmberg II, observed as part of the Euclid Early Release Observations programme. Our main focus is on old globular clusters (GCs), for which the wide field-of-view and excellent image quality of Euclid offer substantial advantages over previous work. For IC 342 this is the first study of stellar clusters other than its nuclear cluster. After selection based on size and magnitude criteria, followed by visual inspection, we identify 111 old (> 1 Gyr) GC candidates in IC 342, 50 in NGC 2403 (of which 15 were previously known), and 7 in Holmberg II. In addition, a number of younger and/or intermediate-age candidates are identified. The colour distributions of GC candidates in the two larger galaxies show hints of bimodality with peaks at IE-HE = 0.36 and 0.79 (IC 342) and IE-HE = 0.36 and 0.80 (NGC 2403), corresponding to metallicities of [Fe/H]=-1.5 and [Fe/H]=-0.5, similar to those of the metal-poor and metal-rich GC subpopulations in the Milky Way. The luminosity functions of our GC candidates exhibit an excess of relatively faint objects, relative to a canonical, approximately Gaussian GC luminosity function (GCLF). The excess objects may be similar to those previously identified in other galaxies. The specific frequency of classical old GCs in IC 342, as determined based on the brighter half of the GCLF, appears to be unusually low with SN=0.2-0.3. The combined luminosity function of young and intermediate-age clusters in all three galaxies is consistent with a power-law distribution, dN/dL ~ L^(-2.3+/-0.1) and the total numbers of young clusters brighter than M(IE)=-8 in NGC 2403 and Holmberg II are comparable with those found in their Local Group counterparts, that is, M33 and the Small Magellanic Cloud, respectively.
Following a recent detection of TeV radiation by the Large High Altitude Air Shower Observatory (LHAASO) and the High-Altitude Water Cherenkov Observatory (HAWC), coincident with the direction of the microquasar V4641 Sgr, we search for possible GeV emission from this source. We explored the morphology and temporal features of the source as well as two nearby unassociated point sources which could be a part of extended structure of V4641 Sgr, and compared results with corresponding X-ray and TeV emissions. The 95% confidence level upper limits for the flux from the source, assuming both point and extended source models were 5.38$\times$ 10$^{-13}$ erg cm$^{-2}$ s$^{-1}$ and 1.12$\times$ 10$^{-12}$ erg cm$^{-2}$ s$^{-1}$, respectively. Additionally, no correlation between gamma-ray light curve and X-ray outbursts was observed.
Short-period massive binary stars are predicted to undergo chemically homogeneous evolution (CHE), making them prime candidates for producing binary black holes (BBHs) that may merge within the age of the Universe. Most of these binaries have a tertiary companion, and here we explore how a nearby third body possibly influences this evolutionary channel. Our analysis combines analytic treatments of triple dynamics with insights from detailed stellar evolution models, focusing on the role of the von Zeipel-Lidov-Kozai mechanism while also accounting for tidal and general relativistic apsidal precession. We examine the dynamics of triples at three critical evolutionary stages: the zero-age main sequence, shortly after the main sequence, and at the time of BBH formation. We find that, for triples having outer orbital periods less than 70 d(120 d), the inner binary can merge during(or after) the main-sequence stage, leading to a hydrogen-rich(helium-rich) stellar merger. If a stellar merger is avoided, the inner binary may eventually form a BBH. In mildly hierarchical triples, with outer periods of around 100 d, the tertiary component can trigger a rapid merger of the BBH on timescales comparable to the outer orbital period. Stellar tides play a crucial role in determining the fate of the inner binary in such tight triple systems, as they can suppress the perturbative effects of the third star. When tidal forces damp the oscillations induced by the tertiary, the BBH merger may occur soon after stellar collapse. Notably, these outcomes are not restricted to CHE binaries but can also apply to any BBH formed from stars in tight orbits. Mergers in these systems are characterized by the proximity of a tertiary companion and the presence of recently ejected gas, making them promising candidates for electromagnetic counterparts and gravitational-wave signals influenced by nearby tertiary objects.
We present a catalog of 500 galaxy cluster candidates in the SPT-Deep field: a 100 deg$^2$ field that combines data from the SPT-3G and SPTpol surveys to reach noise levels of 3.0, 2.2, and 9.0 $\mu$K-arcmin at 95, 150, and 220 GHz, respectively. This is comparable to noise levels expected for the wide field survey of CMB-S4, a next-generation CMB experiment. Candidates are selected via the thermal Sunyaev-Zel'dovich (SZ) effect with a minimum significance of $\xi = 4.0$, resulting in a catalog of purity $\sim 89 \%$. Optical data from the Dark Energy Survey and infrared data from the Spitzer Space Telescope are used to confirm 442 cluster candidates. The clusters span $0.12 < z \lesssim 1.8$ and $1.0 \times 10^{14} M_{\odot}/h_{70} < M_{500c} < 8.7 \times 10^{14} M_{\odot}/h_{70}$. The sample's median redshift is 0.74 and the median mass is $1.7 \times 10^{14} M_{\odot}/h_{70}$; these are the lowest median mass and highest median redshift of any SZ-selected sample to date. We assess the effect of infrared emission from cluster member galaxies on cluster selection by performing a joint fit to the infrared dust and tSZ signals by combining measurements from SPT and overlapping submillimeter data from Herschel/SPIRE. We find that at high redshift ($z>1)$, the tSZ signal is reduced by $17.4^{+3.1}_{-2.9} \%$ ($3.7^{+0.7}_{-0.7}\%$) at 150 GHz (95 GHz) due to dust contamination. We repeat our cluster finding method on dust-nulled SPT maps and find the resulting catalog is consistent with the nominal SPT-Deep catalog, demonstrating dust contamination does not significantly impact the SPT-Deep selection function; we attribute this lack of bias to the inclusion of the SPT 220 GHz band.
A novel model of systematic errors for the regression of Poisson data is applied to hypothesis testing of nested model components with the introduction of a generalization of the $\Delta C$ statistic that applies in the presence of systematic errors. This paper shows that the null-hypothesis parent distribution of this $\Delta C_{sys}$ statistic can be obtained either through a simple numerical procedure, or in a closed form by making certain simplifying assumptions. It is found that the effects of systematic errors on the test statistic can be significant, and therefore the inclusion of sources of systematic errors is crucial for the assessment of the significance of nested model component in practical applications. The methods proposed in this paper provide a simple and accurate means of including systematic errors for hypothesis testing of nested model components in a variety of applications.