Newtonian and post-Newtonian (PN) calculations suggest that each spherical harmonic mode of the gravitational waveforms (radiation) emitted by eccentric binaries can be further decomposed into several eccentricity-induced modes (indexed by $j=1$ to $j=\infty$), referred to as eccentric harmonics. These harmonics exhibit monotonically time-varying amplitudes and instantaneous frequencies, unlike the full eccentric spherical harmonic modes. However, computing or extracting these harmonics are not straightforward in current numerical relativity (NR) simulations and eccentric waveform models. To address this, Patterson \textit{et al} have developed a framework to extract the eccentric harmonics directly from effective-one-body formalism waveforms. In this paper, we build on the ideas presented in Patterson \textit{et al} and propose a data-driven framework, utilizing singular-value decomposition (SVD), that incorporates additional features based on PN intuition to ensure monotonicity in the extracted harmonics. We further demonstrate that the phase (frequency) of these harmonics is simply $j\phi_{\lambda}+\phi_{\rm ecc}$ ($jf_{\lambda}+f_{\rm ecc}$) where $\phi_{\lambda}$ ($f_{\lambda}$) is related to the secular orbital phase (frequency) and $\phi_{\rm ecc}$ ($f_{\rm ecc}$) is an additional phase (frequency) that only depends on the eccentricity. We also provide simple analytical fits to obtain the harmonics as a function of the mean anomaly. These relations may prove useful in constructing faithful models that can be employed in cheap and efficient searches and parameter estimation of eccentric mergers. Our framework is modular and can be extended for any other eccentric waveform models or simulation frameworks. The framework is available through the \texttt{gwMiner} package.
We present the first contemporaneous X-ray and optical polarimetric measurement of the extremely high synchrotron peaked (EHSP) blazar H 1426+428. The X-ray polarimetric observations were undertaken using the Imaging X-ray Polarimetry Explorer (\textit{IXPE}) on 2024 May 27, and 2024 July 5. The \textit{IXPE} pointings were accompanied by contemporaneous optical observations of the Observatorio de Sierra Nevada, Calar Alto Observatory and the Perkins Telescope Observatory. While we observed the X-ray degree of polarization to be $>20\%$, the polarization in the optical band was found to be only $1-3\%$. This trend has been observed in several HSP blazars with available optical and X-ray polarimetric data and is typically explained in terms of energy stratification downstream of a shock. However, we observed a significant difference between the optical and X-ray polarization angles, a feature that has been observed in certain HSP blazars, such as Mrk 421, but remains a relatively rare or underreported phenomenon. We discuss possible scenarios for these findings within the framework of a partially turbulent jet model.
We present gwharmone, the first data-driven surrogate model for eccentric harmonics (as well as the full radiation content) of the dominant quadrupolar mode in eccentric, non-spinning binary black hole mergers. Our model is trained on 173 waveforms, each $100,000M$ long (where $M$ is the total mass), generated for mass ratios $q \in [1,3.5]$ and eccentricities $e_{\rm ref} \in [0,0.2]$ (at the start of the waveform). The eccentric harmonics are extracted from the effective-one-body waveforms using the \texttt{gwMiner} package. We apply a singular value decomposition (SVD) to obtain a set of reduced basis vectors, necessary to construct a lower-dimensional representation of data, and use Gaussian Process Regression (GPR) to interpolate SVD coefficients across parameter space, allowing for prediction at new parameter points. The model includes the effect of mean anomaly, its evaluation cost is only $\sim 0.1$ second and it achieves an average time-domain (validation) error of ~0.001 and frequency-domain (validation) mismatches below 0.01 for advanced LIGO sensitivity. Our model can therefore be useful in efficient searches and parameter estimation of eccentric mergers. gwharmone will be publicly available through the gwModels package.
KAGRA is a kilometer-scale cryogenic gravitational-wave (GW) detector in Japan. It joined the 4th joint observing run (O4) in May 2023 in collaboration with the Laser Interferometer GW Observatory (LIGO) in the USA, and Virgo in Italy. After one month of observations, KAGRA entered a break period to enhance its sensitivity to GWs, and it is planned to rejoin O4 before its scheduled end in October 2025. To accurately recover the information encoded in the GW signals, it is essential to properly calibrate the observed signals. We employ a photon calibration (Pcal) system as a reference signal injector to calibrate the output signals obtained from the telescope. In ideal future conditions, the uncertainty in Pcal could dominate the uncertainty in the observed data. In this paper, we present the methods used to estimate the uncertainty in the Pcal systems employed during KAGRA O4 and report an estimated system uncertainty of 0.79%, which is three times lower than the uncertainty achieved in the previous 3rd joint observing run (O3) in 2020. Additionally, we investigate the uncertainty in the Pcal laser power sensors, which had the highest impact on the Pcal uncertainty, and estimate the beam positions on the KAGRA main mirror, which had the second highest impact. The Pcal systems in KAGRA are the first fully functional calibration systems for a cryogenic GW telescope. To avoid interference with the KAGRA cryogenic systems, the Pcal systems incorporate unique features regarding their placement and the use of telephoto cameras, which can capture images of the mirror surface at almost normal incidence. As future GW telescopes, such as the Einstein Telescope, are expected to adopt cryogenic techniques, the performance of the KAGRA Pcal systems can serve as a valuable reference.
Euclid will image ~14000 deg^2 of the extragalactic sky at visible and NIR wavelengths, providing a dataset of unprecedented size and richness that will facilitate a multitude of studies into the evolution of galaxies. In the vast majority of cases the main source of information will come from broad-band images and data products thereof. Therefore, there is a pressing need to identify or develop scalable yet reliable methodologies to estimate the redshift and physical properties of galaxies using broad-band photometry from Euclid, optionally including ground-based optical photometry also. To address this need, we present a novel method to estimate the redshift, stellar mass, star-formation rate, specific star-formation rate, E(B-V), and age of galaxies, using mock Euclid and ground-based photometry. The main novelty of our property-estimation pipeline is its use of the CatBoost implementation of gradient-boosted regression-trees, together with chained regression and an intelligent, automatic optimization of the training data. The pipeline also includes a computationally-efficient method to estimate prediction uncertainties, and, in the absence of ground-truth labels, provides accurate predictions for metrics of model performance up to z~2. We apply our pipeline to several datasets consisting of mock Euclid broad-band photometry and mock ground-based ugriz photometry, to evaluate the performance of our methodology for estimating the redshift and physical properties of galaxies detected in the Euclid Wide Survey. The quality of our photometric redshift and physical property estimates are highly competitive overall, validating our modeling approach. We find that the inclusion of ground-based optical photometry significantly improves the quality of the property estimation, highlighting the importance of combining Euclid data with ancillary ground-based optical data. (Abridged)
Among the ways that an outer giant planet can alter the architecture of an inner planetary system is by tilting the orbits of the inner planets and reducing their mutual transit probabilities. Here, we report on an example of this phenomenon: we show that the Kepler-139 system contains a nontransiting planet just exterior to three transiting planets, and interior to a giant planet. This newly discovered planet, Kepler-139f, has an orbital period of $355 \pm 2$ days and a mass of $36 \pm 10 M_\oplus$ based on transit-timing and radial-velocity data. Through dynamical simulations, we show that gravitational perturbations on planet f's orbit from the outer giant planet reduce the probability for a randomly located observer to see transits of all four inner planets. Thus, Kepler-139 illustrates the role that outer giant planets can play in the apparent truncation of compact systems of multiple transiting planets.