We present new {\it JWST}/MIRI MRS and Keck spectra of SN 1995N obtained in 2022--2023, more than 10,000 days after the supernova (SN) explosion. These spectra are among the latest direct detections of a core-collapse SN, both through emission lines in the optical and thermal continuum from infrared dust emission. The new infrared data show that dust heating from radiation produced by the ejecta interacting with circumstellar matter is still present, but greatly reduced from when SN 1995N was observed by the {\it Spitzer Space Telescope} and {\it WISE} in 2009/2010 and 2018, when the dust mass was estimated to be 0.4 M(Sun). New radiative-transfer modeling suggests that the dust mass and grain size may have increased between 2010 and 2023. The new data can alternatively be well fit with a dust mass of 0.4 M(Sun) and a much reduced heating source luminosity. The new late-time spectra show unusually strong oxygen forbidden lines, stronger than the H-alpha emission. This indicates that SN 1995N may have exploded as a stripped-envelope SN which then interacted with a massive H-rich circumstellar shell, changing it from intrinsically Type Ib/c to Type IIn. The late-time spectrum results when the reverse shock begins to excite the inner H-poor, O-rich ejecta. This change in the spectrum is rarely seen, but marks the start of the transition from SN to SN remnant.
Episodic accretion is a fundamental process in the build-up of the stellar mass. EX Lupi-type eruptive young stars (EXors) represent one of the main types of episodic accretion. We study the recently discovered EXor Gaia23bab during its 2023 outburst. We obtained optical and near-infrared photometry and spectroscopy to probe the variation of the physical properties of Gaia23bab during its recent outburst. We also collected archival photometry to study a previous outburst of the star. We used several accretion tracers, including the Ca II triplet, He I, and various hydrogen lines from the Paschen and Brackett series, to measure the accretion rate during the outburst. The accretion rate is consistent with $\sim 2.0 \times 10^{-7} M_\odot$ $\rm{yr}^{-1}$. Comparing the line fluxes of the hydrogen Brackett series to predictions of Case B theory suggests excitation temperatures of 5000 - 10000 K and electron densities of $10^9$-$10^{10}$ cm$^{-3}$. Comparison to the predictions of a model for T Tauri stars revealed that the fluxes of the Balmer series are consistent with temperatures of 5000 - 12500 K and a hydrogen density of $10^8$ cm$^{-3}$, while the fluxes of the Paschen series are consistent with temperatures in the range between 10000 and 12500 K and a hydrogen density of $10^{11}$ cm$^{-3}$. The derived temperatures and densities confirm that Gaia23bab is a prototypical EXor, not only due to its accretion rate, but also based on the best fit temperatures and densities revealed by the detected hydrogen lines.
We investigate the degeneracy between the effects of ultra-light axion dark matter and baryonic feedback in suppressing the matter power spectrum. We forecast that galaxy shear data from the Rubin Observatory's Legacy Survey of Space and Time (LSST) could limit an axion of mass $m = 10^{-25}\,\mathrm{eV}$ to be $\lesssim 5\%$ of the dark matter, stronger than any current bound, if the interplay between axions and feedback is accurately modelled. Using a halo model emulator to construct power spectra for mixed cold and axion dark matter cosmologies, including baryonic effects, we find that galaxy shear is sensitive to axions from $10^{-27}\,\mathrm{eV}$ to $10^{-21}\,\mathrm{eV}$, with the capacity to set competitive bounds across much of this range. For axions with $m \sim 10^{-25}\,\mathrm{eV}$, the scales at which axions and feedback impact structure formation are similar, introducing a parameter degeneracy. We find that, with an external feedback constraint, we can break the degeneracy and constrain the axion transfer function, such that LSST could detect a $10^{-25}\,\mathrm{eV}$ axion comprising 10\% of the dark matter at $\sim 3 \sigma$ significance. Direct reconstruction of the non-linear matter power spectrum provides an alternative way of analysing weak lensing surveys, with the advantage of identifying the scale-dependent features in the data that the dark matter model imposes. We advocate for dedicated cosmological hydrodynamical simulations with an axion dark matter component so that upcoming galaxy and cosmic microwave background lensing surveys can disentangle the dark matter-baryon transfer function.
We present a measurement of the $B$-mode polarization power spectrum of the cosmic microwave background anisotropies at 32 $\le$ $\ell$ $<$ 502 for three bands centered at 95, 150, and 220 GHz using data from the SPT-3G receiver on the South Pole Telescope. This work uses SPT-3G observations from the 2019 and 2020 winter observing seasons of a $\sim$1500 deg$^2$ patch of sky that directly overlaps with fields observed with the BICEP/Keck family of telescopes, and covers part of the proposed Simons Observatory and CMB-S4 deep fields. Employing new techniques for mitigating polarized atmospheric noise, the SPT-3G data demonstrates a white noise level of 9.3 (6.7) $\mu$K-arcmin at $\ell \sim 500$ for the 95 GHz (150 GHz) data, with a $1/\ell$ noise knee at $\ell$=128 (182). We fit the observed six auto- and cross-frequency $B$-mode power spectra to a model including lensed $\Lambda$CDM $B$-modes and a combination of Galactic and extragalactic foregrounds. This work characterizes foregrounds in the vicinity of the BICEP/Keck survey area, finding foreground power consistent with that reported by the BICEP/Keck collaboration within the same region, and a factor of $\sim$ 3 higher power over the full SPT-3G survey area. Using SPT-3G data over the BICEP/Keck survey area, we place a 95% upper limit on the tensor-to-scalar ratio of $r < 0.25$ and find the statistical uncertainty on $r$ to be $\sigma(r) = 0.067$.