We report the discovery and confirmation of TOI-4465 b, a $1.25^{+0.08}_{-0.07}~R_{J}$, $5.89\pm0.26~M_{J}$ giant planet orbiting a G dwarf star at $d\simeq$ 122 pc. The planet was detected as a single-transit event in data from Sector 40 of the Transiting Exoplanet Survey Satellite (TESS) mission. Radial velocity (RV) observations of TOI-4465 showed a planetary signal with an orbital period of $\sim$102 days, and an orbital eccentricity of $e=0.24\pm0.01$. TESS re-observed TOI-4465 in Sector 53 and Sector 80, but did not detect another transit of TOI-4465 b, as the planet was not expected to transit during these observations based on the RV period. A global ground-based photometry campaign was initiated to observe another transit of TOI-4465 b after the RV period determination. The $\sim$12 hour-long transit event was captured from multiple sites around the world, and included observations from 24 citizen scientists, confirming the orbital period as $\sim$102 days. TOI-4465 b is a relatively dense ($3.73\pm0.53~\rm{g/cm^3}$), temperate (375-478 K) giant planet. Based on giant planet structure models, TOI-4465 b appears to be enriched in heavy elements at a level consistent with late-stage accretion of icy planetesimals. Additionally, we explore TOI-4465 b's potential for atmospheric characterization, and obliquity measurement. Increasing the number of long-period planets by confirming single-transit events is crucial for understanding the frequency and demographics of planet populations in the outer regions of planetary systems.
On 2022 September 5, a large solar energetic particle (SEP) event was detected by Parker Solar Probe (PSP) and Solar Orbiter (SolO), at heliocentric distances of 0.07 and 0.71 au, respectively. PSP observed an unusual velocity-dispersion signature: particles below $\sim$1 MeV exhibited a normal velocity dispersion, while higher-energy particles displayed an inverse velocity arrival feature, with the most energetic particles arriving later than those at lower energies. The maximum energy increased from about 20-30 MeV upstream to over 60 MeV downstream of the shock. The arrival of SEPs at PSP was significantly delayed relative to the expected onset of the eruption. In contrast, SolO detected a typical large SEP event characterized by a regular velocity dispersion at all energies up to 100 MeV. To understand these features, we simulate particle acceleration and transport from the shock to the observers with our newly developed SEP model - Particle ARizona and MIchigan Solver on Advected Nodes (PARMISAN). Our results reveal that the inverse velocity arrival and delayed particle onset detected by PSP originate from the time-dependent diffusive shock acceleration processes. After shock passage, PSP's magnetic connectivity gradually shifted due to its high velocity near perihelion, detecting high-energy SEPs streaming sunward. Conversely, SolO maintained a stable magnetic connection to the strong shock region where efficient acceleration was achieved. These results underscore the importance of spatial and temporal dependence in SEP acceleration at interplanetary shocks, and provide new insights to understand SEP variations in the inner heliosphere.
The Lobster Eye Imager for Astronomy (LEIA), as a pathfinder of the Wide-field X-ray Telescope (WXT) onboard the Einstein Probe (EP) satellite, is the first lobster-eye focusing X-ray telescope with a considerably large field-of-view (FoV) ever flown. During the two and half years of operations, a series of calibration observations were performed, to fully characterize its performance and calibrate the instrumental properties. In this paper, we present the results of the in-flight calibration campaign of LEIA, focusing on the properties of the PSF, source positional accuracy, effective area, energy response and the instrumental background. The calibration sources used are the Crab nebula, Sco X-1 and Cassiopeia A supernova remnant. Specifically, it is found that the spatial resolution remains almost unchanged compared to the pre-launch values, ranging from 3.6'-9.3' with a median of 5.9'. The post-calibration source positional accuracy is found to be ~2' (at the 90% C.L.). The Crab spectra can be well reproduced by the absorbed power-law model with the best-fit parameters in large agreement with the literature values, indicating that the in-orbit effective area is overall consistent with the model predictions and ground measurements. The effective area exhibits a systematic of $\lesssim10\%$ (at the 68% C.L.), and a mild deterioration of ~15% at the lower energy end after one year of operation. The Cas A spectral analysis shows that the energy scale and spectral resolution of the detectors are generally consistent with ground values. The instrumental background is found to be largely consistent among the four detectors, with strong modulations by the geomagnetic activity and the spectrum qualitatively consistent with our previous simulations. These instrumental performances well meet the design requirements. This work paves the way for the in-orbit calibration of the EP-WXT.
We present observations of HCN J=4-3 and HCO^+ J=4-3 lines obtained with the James Clerk Maxwell Telescope as part of the MALATANG survey, combined with archival HCN J=1-0 and HCO^+ J=1-0 data from the Green Bank Telescope, to study the spatial distribution and excitation conditions of dense molecular gas in the disk of M82. We detect HCN J=4-3 and HCO^+ J=4-3 emission within the central region (< 500 pc) of the galaxy, while the J=1-0 emission lines exhibit a more extended spatial distribution (> 700 pc). The dense gas shows a clear double-lobed structure in both spatial distribution and kinematics, with the HCN and HCO^+ J=4-3 lines in the southwest lobe blueshifted by ~ 40 km/s relative to the J=1-0 lines. The HCN J=4-3/1-0 and HCO^+ J=4-3/1-0 line-luminosity ratios range from 0.09 to 0.53 and from 0.14 to 0.87, respectively, with mean values of 0.18 +/- 0.04 and 0.36 +/- 0.06. The HCN ratio is lower than the typical average observed in nearby star-forming galaxies, whereas the HCO^+ ratio is comparatively higher, suggesting that the high-J HCN emission in M82 is significantly sub-thermally excited. Spatially, the peak values of the J=4-3/1-0 ratios are found in the northwest region of M82, coinciding with the galaxy-scale outflow. Elevated HCN/HCO^+ ratios are also detected in roughly the same area, potentially tracing local excitation enhancements driven by the outflow. The HCN/HCO^+ J=4-3 ratio across all detected regions ranges from 0.19 to 1.07 with a mean value of 0.41 +/- 0.11, which is significantly lower than the average J=1-0 ratio of 0.76 +/- 0.08. Both ratios are significantly lower than the average values observed in nearby star-forming galaxies, which could be related to the relatively low gas density and the presence of an extended photo-dissociation region in M82.
The magnetic fields and dynamical processes in the solar polar regions play a crucial role in the solar magnetic cycle and in supplying mass and energy to the fast solar wind, ultimately being vital in controlling solar activities and driving space weather. Despite numerous efforts to explore these regions, to date no imaging observations of the Sun's poles have been achieved from vantage points out of the ecliptic plane, leaving their behavior and evolution poorly understood. This observation gap has left three top-level scientific questions unanswered, 1) How does the solar dynamo work and drive the solar magnetic cycle? 2) What drives the fast solar wind? 3) How do space weather processes globally originate from the Sun and propagate throughout the solar system? The Solar Polar-orbit Observatory (SPO) mission, a solar polar exploration spacecraft, is proposed to address these three unanswered scientific questions by imaging the Sun's poles from high heliolatitudes. In order to achieve its scientific goals, SPO will carry six remote-sensing and four in-situ instruments to measure the vector magnetic fields and Doppler velocity fields in the photosphere, to observed the Sun in the extreme ultraviolet, X-ray, and radio wavelengths, to image the corona and the heliosphere up to 45 $R_\odot$, and to perform in-situ detection of magnetic fields, and low- and high-energy particles in the solar wind.
We have developed a lightweight tool {\tt RapidGBM}, featured by a web-based interface and capabilities of rapid calculation of Fermi-GBM visibilities and performing basic data analysis. It has two key features: (1) immediately check the visibility of Fermi-GBM for new transients, and (2) check the light curve and perform spectral analysis after the hourly TTE data is released. The visibility check and the response matrix generation required for spectral analysis can be achieved through the historical pointing file after the orbit calculation, even when the real-time pointing file is not yet available. As a case, we apply the tool to EP240617a, an X-ray transient triggered by Einstein Probe (EP). We demonstrate the workflow of visibility checking, data processing, and spectral analysis for this event. The results suggest that EP240617a can be classified as an X-ray-rich GRB (XRR) and confirm the feasibility of using historical pointing files for rapid analysis. Further, we discuss possible physical interpretations of such events, including implications for jet launching and progenitor scenarios. Therefore, {\tt RapidGBM} is expected to assist Einstein Probe Transient Advocates (EP-TAs), Space-based multi-band astronomical Variable Objects Monitor Burst Advocates (SVOM-BAs), and other members of the community in cross-checking high-energy transients. Based on prompt emission parameter relations (e.g. $E_{\rm p}$-$E_{\gamma,\rm iso}$), it can also help identify peculiar GRBs (e.g. long-short burst, magnetar giant flare, etc.) and and provide useful references (e.g. more accurate $T_0$) for scheduling follow-up observations.
this https URL Comments are welcome
this http URL ) and a README file ( this http URL )