The active suppression of star formation in galaxies is critical in preventing the growth of overly massive systems and explaining the formation of present-day elliptical galaxies. We present a high-resolution, spatially-resolved multiwavelength study of two z ~ 0.7 massive post-starburst galaxies, SDSS J1448+1010 and SDSS J2258+2313, from the SQuIGGLE survey (Studying Quenching in Intermediate-z Galaxies: Gas, anguLar momentum, and Evolution), providing new insights into the role of mergers in driving quenching. ALMA CO(2-1) observations show that both galaxies removed ~50% of their molecular gas into extended tidal tails, spanning up to 65 kpc, following recent mergers. HST WFC3 imaging and grism spectroscopy show that while SDSS J1448+1010 exhibits Halpha emission in its northern tidal tail consistent with ongoing star formation, SDSS J2258+2313 lacks detectable star-forming activity outside the central galaxy. VLA 6 GHz continuum data reveal compact radio emission in SDSS J2258+2313, while SDSS J1448+1010 hosts small radio jets indicative of AGN activity. Both galaxies retain substantial molecular gas reservoirs in their central regions that appear more turbulent than 'normal' star-forming galaxies, likely contributing to the observed low star formation rates in the hosts. Despite similarities in their cold gas content and tidal features the galaxies are distinct from each other in their star formation, gas-star alignment, and radio morphology, highlighting the complexity of tidal gas removal as a quenching mechanism at intermediate redshifts.
We present new observations that densely sample the microwave (4-360 GHz) continuum spectra from eight young systems in the Taurus region. Multi-component, empirical model prescriptions were used to disentangle the contributions from their dust disks and other emission mechanisms. We found partially optically thick, free-free emission in all these systems, with positive spectral indices (median $\alpha_{\rm c} \approx 1$ at 10 GHz) and contributing 5-50% of the 43 GHz fluxes. There is no evidence for synchrotron or spinning dust grain emission contributions for these targets. The inferred dust disk spectra all show substantial curvature: their spectral indices decrease with frequency, from $\alpha_{\rm d} \approx 2.8$-4.0 around 43 GHz to 1.7-2.1 around 340 GHz. This curvature suggests that a substantial fraction of the (sub)millimeter ($\gtrsim$ 200 GHz) dust emission may be optically thick, and therefore the traditional metrics for estimating dust masses are flawed. Assuming the emission at lower frequencies (43 GHz) is optically thin, the local spectral indices and fluxes were used to constrain the disk-averaged dust properties and estimate corresponding dust masses. These masses are roughly an order of magnitude higher ($\approx 1000 \, M_\oplus$) than those found from the traditional approach based on (sub)millimeter fluxes. These findings emphasize the value of broad spectral coverage - particularly extending to lower frequencies ($\sim$cm-band) - for accurately interpreting dust disk emission; such observations may help reshape our perspective on the available mass budgets for planet formation.
this https URL . The tutorial for re-making the data products using the public code and maps will be posted in a few days
We present the results of a search for galaxy clusters in the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) microwave sky maps covering 16293 square degrees in three frequency bands, using data obtained over the lifetime of the project (2008-2022). We report redshifts and mass estimates for 9977 clusters detected via their Sunyaev-Zel'dovich (SZ) effect with signal-to-noise greater than 4 at a 2.4 arcminute filter scale. The catalog includes 1166 clusters at redshifts greater than 1, and 121 clusters at redshifts greater than 1.5. Using a relation between cluster SZ signal and mass that is consistent with recent weak-lensing measurements, we estimate that clusters detected with signal-to-noise greater than 5 form a sample which is 90% complete for clusters with masses greater than $5 \times 10^{14}$ MSun (measured within a spherical volume with mean density 500 times the critical density). El Gordo, a cluster found in an initial ACT survey of 755 square degrees, remains the most extreme cluster in mass and redshift; we find no cluster with a mass and redshift combination high enough to falsify the standard LCDM cosmology with Gaussian initial perturbations. We make public a variety of data products, including the full cluster candidate list, noise maps, and sky masks, along with our software for cluster detection and instructions for reproducing our cluster catalogs from the public ACT maps.
In this study, we develop a modeling framework based on spatio-temporal generalized random fields to simulate the time-evolving accretion flows and their associated imaging signatures around rotating regular black holes. We extend the Matérn field formalism to the spatio-temporal domain and introduce a locally anisotropic tensor structure \(\Lambda(\mathbf{x})\), which encodes direction-dependent correlation scales motivated by Keplerian velocity fields, thereby generating physically informed perturbation structures. Coupled with a computationally efficient light ray-tracing scheme, this framework produces a sequence of time-resolved images of regular black hole shadow and accretion structures. By incorporating light-travel time effects, we identify significant temporal smearing of features within strongly lensed regions and rapidly varying sources, thus enhancing the physical realism of the modeling. Comparison with existing general relativistic magnetohydrodynamic simulations demonstrates that our stochastic generative model maintains statistical consistency while offering substantial computational efficiency. Moreover, the simulated results reproduce the dynamic positional shift of the bright ring structure observed in M87$^{*}$, providing theoretical support for interpreting its time-variable images.
Accretion disks in Active Galactic Nuclei (AGN) are predicted to become gravitationally unstable substantially interior to the black hole's sphere of influence, at radii where the disk is simultaneously unstable to the magnetorotational instability (MRI). Using local shearing box simulations with net vertical flux and a simple cooling prescription, we investigate the effect of magnetic fields on fragmentation in the limit of ideal magnetohydrodyamics. Different levels of in-disk magnetic field from the magnetorotational instability are generated by varying the initial vertical-field plasma beta $\beta_0$. We find that the disk becomes magnetically dominated when $\beta_0 < 10^3$, and that this transition is accompanied by a drastic drop in fragmentation (as measured by the bound mass fraction) and gravitational stress. The destabilizing influence of radial magnetic fields, which are present locally and which may promote fragmentation via magnetic tension effects, is overwhelmed by magnetic elevation, which significantly reduces the mid-plane density. The magnetic suppression of fragmentation in magnetically elevated disks has implications for the radial extent of the accretion flow in AGN disks, and for the efficiency of in situ formation of disk-embedded stars that are progenitors for single and binary compact objects.
this https URL . Repository: this https URL
this https URL . Submitted to Computer Physics Communications