We present the deepest medium-resolution JWST/NIRSpec spectroscopy to date of a bright Little Red Dot (LRD) AGN, Irony at z=6.68. The data reveal broad Balmer emission from H$\alpha$-H$\delta$ and Balmer absorption in H$\alpha$-H$\epsilon$. The absorption lines are kinematically split: H$\alpha$ is blueshifted while higher-order lines are redshifted suggesting complex gas kinematics; their relative ratios are inconsistent with a single, passive absorbing screen. The line depths require absorption of both the BLR and the continuum, ruling out a stellar origin, consistent with the smooth Balmer break. We fit the broad H$\gamma$-H$\alpha$ lines and find the data favor a double-Gaussian effective profile, although exponential wings are evident. Depending on the adopted profile, single-epoch virial estimates give log(M$_\bullet$/M$_\odot$)=7.86-8.39 and $\lambda_{\rm Edd}$=1.7-0.4. The dynamical mass implied by the narrow lines is low log(Mdyn/M$_\odot$)=9.1, suggesting an overmassive black hole. The narrow lines display little attenuation, A$_V<0.5$ mag; while broad H$\alpha$/H$\beta\sim9$ and the broad Balmer decrements are inconsistent with standard dust attenuation curves, suggesting collisional processes. The forbidden-line spectrum includes auroral [S II] and [N II], and a forest of [Fe II] lines. Line ratios and kinematics indicate a stratified narrow-line region with both low (n$_{\rm e}$=420 cm$^{-3}$) and high densities (n$_{\rm e}\gtrsim 6.3\times10^5$ cm$^{-3}$). We detect metal absorption lines in both the optical (Ca II and Na I) and UV range (Fe II UV1-UV3). Our results support a picture of a compact AGN embedded in a dense, high covering-factor and stratified cocoon, with complex neutral-gas kinematics. While the choice of broad-line profile affects the virial estimates of M$_\bullet$, we find the effect to be of order 0.6 dex between the different approaches.
We report the discovery of TOI-4507 b, a transiting sub-Saturn with a density $<0.3$ g/cm$^3$ on a 105-day polar orbit around a $700$ Myr old F star. The transits were detected using data from TESS as well as the Antarctic telescope ASTEP. A joint analysis of the light curves and radial velocities from HARPS, FEROS, and CORALIE confirmed the planetary nature of the signal by limiting the mass to be below $30\,M_\oplus$ at $95\%$ confidence. The radial velocities also exhibit the Rossiter-McLaughlin effect and imply that the star's equatorial plane is tilted by $82.0_{-2.4}^{+2.6}$ deg with respect to the planet's orbital plane. With these characteristics, TOI-4507 b is one of longest-period planets for which the stellar obliquity has been measured, and is among the longest-period and youngest ''super-puff'' planets yet discovered.
The population of the Little Red Dots (LRDs) may represent a key phase of supermassive black hole (SMBH) growth. A cocoon of dense excited gas is emerging as key component to explain the most striking properties of LRDs, such as strong Balmer breaks and Balmer absorption, as well as the weak IR emission. To dissect the structure of LRDs, we analyze new deep JWST/NIRSpec PRISM and G395H spectra of FRESCO-GN-9771, one of the most luminous known LRDs at $z=5.5$. These reveal a strong Balmer break, broad Balmer lines and very narrow [O III] emission. We unveil a forest of optical [Fe II] lines, which we argue is emerging from a dense ($n_{\rm H}=10^{9-10}$ cm$^{-3}$) warm layer with electron temperature $T_{\rm e}\approx7000$ K. The broad wings of H$\alpha$ and H$\beta$ have an exponential profile due to electron scattering in this same layer. The high $\rm H\alpha:H\beta:H\gamma$ flux ratio of $\approx10.4:1:0.14$ is an indicator of collisional excitation and resonant scattering dominating the Balmer line emission. A narrow H$\gamma$ component, unseen in the other two Balmer lines due to outshining by the broad components, could trace the ISM of a normal host galaxy with a star formation rate $\sim5$ M$_{\odot}$ yr$^{-1}$. The warm layer is mostly opaque to Balmer transitions, producing a characteristic P-Cygni profile in the line centers suggesting outflowing motions. This same layer is responsible for shaping the Balmer break. The broad-band spectrum can be reasonably matched by a simple photoionized slab model that dominates the $\lambda>1500$ Å continuum and a low mass ($\sim10^8$ M$_{\odot}$) galaxy that could explain the narrow [O III], with only subdominant contribution to the UV continuum. Our findings indicate that Balmer lines are not directly tracing gas kinematics near the SMBH and that the BH mass scale is likely much lower than virial indicators suggest.
SN 2025coe is a calcium-strong transient located at an extremely large projected offset $\sim$39.3 kpc from the center of its host, the nearby early-type galaxy NGC 3277 at a distance of $\sim$25.5 Mpc. In this paper, we present multi-band photometric and spectroscopic observations spanning $\sim$100 days post-discovery. Its multi-band light curves display three distinct peaks: (1) an initial peak at $t \approx 1.6$ days attributed to shock cooling emission, (2) a secondary peak of $M_{R, \, peak} \approx$ $-$15.8 mag at $t \approx 10.2$ days powered by radioactive decay, and (3) a late-time bump at $t \approx 42.8$ days likely caused by ejecta-circumstellar material/clump interaction. Spectral evolution of SN 2025coe reveals a fast transition to the nebular phase within 2 months, where it exhibits an exceptionally high [Ca II]/[O I] ratio larger than 6. Modeling of the bolometric light curve suggests an ejecta mass of $M_{\rm ej} = 0.29^{+0.14}_{-0.15} \, M_{\odot}$, a $^{56}$Ni mass of $M_{\rm ^{56}Ni} = 2.4^{+0.06}_{-0.05} \times 10^{-2} M_{\odot}$, and a progenitor envelope with mass $M_e = 1.4^{+6.9}_{-1.2} \times 10^{-3} \, M_{\odot}$ and radius $R_e = 13.5^{+64.1}_{-11.1} \, R_{\odot}$. The tidal disruption of a hybrid HeCO white dwarf (WD) by a low-mass CO WD provides a natural explanation for the low ejecta mass, the small fraction of $^{56}$Ni, and the presence of an extended, low-mass envelope.
We present a search for $z\simeq7$ Lyman-break galaxies using the $1.72 \, \rm{deg}^2$ near-infrared UltraVISTA survey in the COSMOS field, reaching $5\,\sigma$ depths in $Y$ of 26.2. We incorporate deep optical and Spitzer imaging for a full spectral energy distribution (SED) fitting analysis. We find 289 candidate galaxies at $6.5\leq z \leq 7.5$ covering $-22.6 \leq M_{\rm UV} \leq -20.2$, faint enough to overlap with Hubble Space Telescope studies. We conduct a separate selection by including complementary Euclid performance verification imaging (reaching $5\,\sigma$ depths of $26.3$), yielding 140 galaxies in $0.65 \, \rm{deg}^2$, with 38 sources unique to this sample. We compute the rest-frame UV luminosity function (UV LF) from our samples, extending below the knee ($M^*=-21.14^{+0.28}_{-0.25}$). We find that the shape of the UV LF is consistent with both a Schechter function and double-power law (DPL) at the magnitudes probed by this sample, with a DPL preferred at $M_{\rm UV}<-22.5$ when bright-end results are included. The UltraVISTA+Euclid sample provides a clean measurement of the LF due to the overlapping near-infrared filters identifying molecular absorption features in the SEDs of ultra-cool dwarf interlopers, and additional faint galaxies are recovered. A comparison with JWST LFs at $z>7$ suggests a gentle evolution in the bright-end slope, although this is limited by a lack of robust bright-end measurements at $z>9$. We forecast that in the Euclid Deep Fields, the removal of contaminant ultra-cool dwarfs as point sources will be possible at $J_{\rm E} < 24.5$. Finally, we present a high-equivalent-width Lyman-$\alpha$ emitter candidate identified by combining HSC, VISTA, and Euclid broadband photometry, highlighting the synergistic power these instruments will have in the Euclid Auxiliary Fields for identifying extreme sources in the Epoch of Reionisation.
this https URL with access to the JADES online database at this https URL
this https URL with access to the JADES online database at this https URL . arXiv admin note: text overlap with arXiv:2404.06531
2404.15416 , 2412.12299 and 2507.03103 ; prepared for 'The Disordered Universe 2025' Summer School